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ABSTRACT: Coarse-grained surface models with a low-
dimension positional dependence have great advantages in
simplifying the theoretical adsorption model and speeding up
molecular simulations. In this work, we present a bottom-up
strategy, developing a new two-dimensional (2D) coarse-
grained surface model from the “bottom-level” atomistic
model, for adsorption on highly heterogeneous surfaces with
various types of defects. The corresponding effective solid−
fluid potential consists of a 2D hard wall potential representing
the structure of the surface and a one-dimensional (1D)
effective area-weighted free-energy-averaged (AW-FEA) po-
tential representing the energetic strength of the substrate−
adsorbate interaction. Within the conventional free-energy-
averaged (FEA) framework, an accessible-area-related parameter is introduced into the equation of the 1D effective solid−fluid
potential, which allows us not only to obtain the energy information from the fully atomistic system but also to get the structural
dependence of the potential on any geometric defect on the surface. Grand canonical Monte Carlo simulations are carried out
for argon adsorption at 87.3 K to test the validity of the new 2D surface model against the fully atomistic system. We test four
graphitic substrates with different levels of geometric roughness for the top layer, including the widely used reference solid
substrate Cabot BP-280. The simulation results show that adding one more dimension to the traditional 1D surface model is
essential for adsorption on the geometrically heterogeneous surfaces. In particular, the 2D surface model with the AW-FEA
solid−fluid potential significantly improves the adsorption isotherm and density profile over the 1D surface model with the FEA
solid−fluid potential over a wide range of pressure. The method to construct an effective solid−fluid potential for an
energetically heterogeneous surface is also discussed.

■ INTRODUCTION
Adsorption on heterogeneous surfaces has been intensively and
extensively studied in experiments, computer simulations, and
theories. In computer simulations, the surface heterogeneity
can be easily introduced by removing solid atoms from the
surface1−3 to create geometric defects or by adding heteroatom
or functional groups to create energetic defects;4,5 such
treatments require the solid−fluid potential with full positional
dependence. However, in theoretical treatments, the solid−
fluid potential with full positional dependence will make
analytical and numerical calculations complicated and often
intractable. The use of an effective solid−fluid potential, which
has only one- or two-dimensional (1D or 2D) positional
dependence reduces the complexity of the theory. Efforts have
been made in density functional theory (DFT) methods6−9 to
model the heterogeneous surfaces. The quenched solid density
functional theory (QSDFT) method7,10 is formulated in the
case of geometrically heterogeneous solid media. The QSDFT
models the solid using the density distribution of solid atoms
in the z-direction (the direction perpendicular to the surface)

rather than the source of the external potential field. In
particular, the two-dimensional nonlocal density functional
theory (2D-NLDFT)8,11 considers both geometrically and
energetically heterogeneous surfaces. The theory uses a two-
dimensional periodic function together with a modified 10-4-3
Steele potential to model the corrugation and energetic
heterogeneity of the surface. These DFT methods use a very
general substrate model, which has limited relation to the real
atomic substrate counterpart, and the parameters in the solid−
fluid potential are fitted to the “top-level” experimental
adsorption data. We call such a potential construction
procedure as “top-down” strategy, namely, obtaining the
energy and structure information of the substrate from the
experimental data. Although the top-down strategy would lead
to a satisfactory reproduction of the experimental data, it loses
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the direct connection to the details of the substrate at a
molecular level.
In contrast to the top-down strategy, for a given atomic

substrate, an analytical expression of the effective solid−fluid
potential for the corresponding surface structure can be found
by integration over all solid atoms, which we refer to as the
“bottom-up” strategy. Early attempts were the Crowell−Steele
10-4 potential12 for the simple nonpolar molecules interacting
with a semi-infinite graphite lattice and the more accurate
Steele 10-4-3 potential13 for a solid with equally spaced layers.
To model simple heterogeneous surfaces, Bojan and Steele
developed an analytical two-dimensional solid−fluid potential
for graphite with a pair of straight-edged ledges onto a flat
surface14,15 and with stacks of graphite basal planes truncated
to form an infinite set of steps of constant width and height.16

More recently, Zhao et al.17 developed an effective solid−fluid
potential, including dipole-induced dipole, dipole−quadrupole
and quadrupole−quadrupole interactions, for strongly polar
molecules adsorbing on a planar graphite surface. Efforts have
also been made on more complicated well-defined pore
geometries, including cylindrical and spherical pore geo-
metries,18 truncated cone shape,19 and overlapping spherical
pore geometries.20,21 Liu et al.22 summarized the analytical
expressions for solid−fluid potentials of a total of 19 solid
models: layers and solids of different geometries (triangle, slab,
cylinder, and sphere) and different dimensionalities (infinite,
semi-infinite, and finite). These integrated solid−fluid
potentials correspond to a simple average of the sum of the
pair interactions of a fluid molecule with the solid atoms. Forte
et al.23 have shown that these integrated potentials are the
leading-order term in the high-temperature expansion of the
free-energy-averaged (FEA) solid−fluid potential. They
concluded that the use of integrated solid−fluid potentials,
such as the (10-4) potential, should be restricted to relatively
high-temperature conditions, where kinetic energy is dominant
and the intricate details of the surface (e.g., gaps) are not
important for the adsorption. In the special case of graphite,
because the surface is so compact and smooth, the use of the
(10-4-3) potential leads to negligible deviations from the FEA
potential even at low temperatures. For more loosely packed
surfaces, or for surfaces with irregular geometrical defects, the
temperature-dependent FEA potential was shown to be highly
preferable to the simple average of the configuration energy of
a fluid molecule with the solid substrate.23

The FEA solid−fluid potential is obtained by mapping the
free energy of the coarse-grained system to that of the full
system. Although the free-energy-averaged method has been
widely employed to derive orientation-independent or angle-
averaged fluid−fluid interactions in perturbation expan-
sions,24,25 its extension to solid−fluid interactions has been
generally overlooked. The current one-dimensional (1D)
effective FEA solid−fluid potential has two major limitations:

(1) It does not work well for surfaces with large geometrical
defects. The FEA solid−fluid potential overestimates the
density of the adsorbed fluid at pressures close to
saturation. Forte et al.23 explained it as a consequence of
assuming fluid−fluid interactions to be independent of
the adsorption. One way to take fluid−fluid interactions
into account is to have multiple effective solid−fluid
potentials at different pressures.6 At low pressures, the
solid−fluid potential is expected to have a “deep”
potential well to account for those active vacancies in the
surface, whereas at high pressures, the solid−fluid
potential should have a “shallow” potential well, because
those active sites on the surface have already been taken
by preadsorbed fluid molecules and subsequent increase
in the adsorption amount only involves weaker surface
sites. The use of multiple effective solid−fluid potentials
is possible in practice but inconvenient. Khlyupin and
Aslyamov9,26 developed an effective solid−fluid potential
in the framework of a randomly rough surface. They
explicitly incorporate the free space available to the fluid
particle near the surface into their DFT formulation, but
their construction of the effective solid−fluid potential is
still limited to the leading-order term in the high-
temperature expansion of the FEA potential, which is
known to be inaccurate at low temperatures. In this
work, we propose a simpler and more transferable
approach to all types of geometrically defective surfaces.
We introduce an additional parameter related to the
accessible area of the geometric vacancies on the surface;
a new two-dimensional (2D) surface model can then be
developed consisting of a 2D hard wall potential that
depends on the vertical distance from the surface (z-
direction) and on the position parallel to the surface (x-
direction), and a one-dimensional (1D) area-weighted
free-energy-averaged (AW-FEA) energetic potential,
which only depends on the vertical distance to the

Figure 1. Schematic plots of adsorbate particles near a solid wall. (a) Three-dimensional fully atomistic model (y-direction is perpendicular to the
xz-plane) with a heterogeneous substrate (composed of gray particles), where the fluid particle’s position is described by a three-dimensional vector
⎯→⎯
rf . (b) Typical 1D coarse-grained surface model used by Forte et al.,23 where the heterogeneous substrate is mapped to a 1D continuum
(structureless) solid with a flat surface; the corresponding effective solid−fluid potential only depends on the vertical distance of the fluid particle to
the basal plane at z = 0. (c) New 2D coarse-grained surface model developed in this work. The coarse-grained heterogeneous substrate is composed
of two parts: a 1D continuum solid with a basal plane at z = 0 and a 2D hard wall (gray area) at z > 0. The total solid−fluid potential now depends
on the x-position of the fluid particle (parallel to the basal plane), as well as its vertical distance to the basal plane. The hard wall is inaccessible to
the whole fluid particles whose diameter is determined by the Lennard-Jones (LJ) size parameter σff. The configuration of the hard walls is
characterized by an accessible length La, and the hard wall is symmetric about the axis x = 0. See the text for details.
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surface. This new coarse-grained surface model contains
both the energetic and structural information of the full
interfacial system. Grand canonical Monte Carlo
(GCMC) simulations are performed to test the validity
of our 2D surface model against the fully atomistic
model.

(2) It is not flexible enough for energetically heterogeneous
surfaces. We need to reevaluate the effective solid−fluid
potential every time for the specific surface structure,
with the variation of energetic site densities. Here, we
consider the recently developed conformal sites theory4

for adsorbed layers on heterogeneous surfaces, and we
briefly outline such an approach in the Appendix.

■ THEORY AND SIMULATION DETAILS
Coarse-Grained Description of Solid−Fluid Interac-

tions for Geometrically Heterogeneous Surface Model.
The general idea of constructing a coarse-grained (CG) surface
model is to map a fully atomistic solid−fluid interaction
potential to a coarse-grained effective solid−fluid potential, as
illustrated in Figure 1. The full solid−fluid (sf) interaction
potential Usf

full in Figure 1a is a function of the particle’s
position in the system; the calculation of such a potential is the
summation of the interaction energy of Nf fluid (f) particles
with all Ns solid (s) atoms

∑ ∑=U u rr r( , ) ( )N N

i

N

j

N

ijsf
full

s f
s f

s f

(1)

where rs
Ns  rs1, rs2, ..., rsNs

and rf
Nf  rf1, rf 2, ..., rfNf

are short-
hand notations of positions of all solid atoms and all fluid
particles, respectively; u(rij) is the pairwise potential energy
between solid atom i and fluid particle j with distance rij. This
full potential is usually applied in the molecular dynamics and
Monte Carlo simulations, the evaluation of which could be
very expensive if the system is large.
Figure 1b shows a typical 1D coarse-grained surface model

where the atomistic substrate is represented by a continuum
(structureless) solid with a flat surface; the continuum solid is
uniform in both x- and y-directions and shows energetic
dependence only in the z-direction. Thus, the corresponding
solid−fluid interaction potential is only a function of the
vertical distance of a fluid particle to the surface. When
applying the free-energy-averaged method, the evaluation of
the total solid−fluid interaction energy Usf

FEA for this CG model
now requires the summation of all Nf adsorbate molecules, and
the positional dependence of the potential reduces from three
dimensions (i.e., x-, y-, and z-directions) to one dimension
(i.e., z-direction)

∑ ϕ=U z z z z( , , ..., ) ( )N
i

N

isf
FEA

f1 f2 f FEA ff

f

(2)

where ϕFEA represents the effective FEA solid−fluid potential
compatible with the 1D surface model. This treatment of the
solid−fluid potential greatly simplifies the theoretical treatment
of a complex interfacial system and speeds up the molecular
simulations. However, it has been confirmed that the FEA
solid−fluid potential overestimates the adsorption amount for
the geometrically heterogeneous surface when substrate atoms
are loosely packed or missing, creating vacancies and
corrugations to the surface.23

To improve the performance of the effective solid−fluid
potential in a system where the solid surface contains
geometric defects, we developed a new coarse-grained surface
model shown in Figure 1c. The coarse-grained substrate now is
composed of a 1D structureless solid with a basal plane at z = 0
similar to that in Figure 1b and a 2D hard wall, which is
uniform only in the y-direction (perpendicular to the paper)
and shows the variations in both x- and z-directions. The hard
wall is symmetric about the axis x = 0 and is inaccessible to the
whole fluid particle characterized by the Lennard-Jones
diameter of σff. The purpose of constructing this hard wall is
to mimic the geometric defects in the surface. If we imagine
that a fluid particle is rolling over the hard wall surface, the
blue dashed line in Figure 1c is the locus of its center of mass;
this locus essentially determines the configuration of the hard
wall. We can use a single parameter, accessible length La, to
describe the shape of this locus. The total solid−fluid
interaction potential then is given by

∑ ϕ ϕ= [ + ]

‐

‐

U x x x z z z

x z z

( , , ..., , , , ..., )

( , ) ( )

N N

i

N

i i i

sf
AW FEA

f1 f2 f f1 f2 f

Hard f f AW FEA f

f f

f

(3)

where ϕAW‑FEA is the energetic part of the total potential
Usf

AW‑FEA and ϕHard(xfi, zfi) is the 2D hard wall potential
representing the structural part of the total potential

ϕ =
+∞

| | <

| | ≥

l
m
ooo
n
ooo

x z
x L z

x L z
( , )

0 ( )

( )
i i

i i

i i
Hard f f

f a f

f a f (4)

whose configuration is determined by the accessible length
parameter La. The energetic part of the total potential, ϕAW‑FEA,
is still constructed within the free-energy-averaged framework,
but now it comes with an additional parameter related to the
accessible area close to the surface. We denote this potential
ϕAW‑FEA as the effective area-weighted free-energy-averaged
(AW-FEA) solid−fluid potential. The next question is how can
we relate this 2D coarse-grained surface model to the
corresponding atomistic system?
We consider a solid substrate consisting of Ns solid atoms of

the same kind with fixed positions, as illustrated in Figure 1a.
Thus, interactions between pairs of solid atoms are neglected.
In the canonical ensemble, the full partition function of a single
fluid particle (i.e., Nf = 1) interacting with this solid substrate
at temperature T can be written as

∫=
Λ

−
i

k
jjjjj

y

{
zzzzzQ

U
k T

r r
r

1
exp

( , )
d

N

full 3
sf
full

s f

B
f

s

(5)

where Λ = (h2/2πmkBT)
1/2 is the de Broglie thermal

wavelength, kB is the Boltzmann constant, and rs and rf are
the positional vectors for the solid atom and the fluid particle,
respectively. The integration in eq 5 is over the whole phase
space or simulation box. If the single fluid particle lies at zf = D,
the partition function of the fully atomistic system can be
evaluated as

Langmuir Article

DOI: 10.1021/acs.langmuir.9b00440
Langmuir 2019, 35, 5975−5986

5977

http://dx.doi.org/10.1021/acs.langmuir.9b00440


∬= =
Λ

−
=

× =
Λ

−
=

{ }

i

k

jjjjjj
y

{

zzzzzz

i

k
jjjjj

y

{
zzzzz

Q z D
U x y z D

k T

x y
A U z D

k T

r
( )

1
exp

( , , , )

d d exp
( )

N

x y

full f 3
sf
full

s f f f

B

f f
full
3

sf
full

f

B
,

s

f f (6)

where Afull is the planar area of the simulation box in x- and y-
directions, and for a fixed simulation box size, Afull is a
constant; the angular bracket denotes the ensemble average
over all possible xf and yf positions with fluid particle fixed at zf
= D. Similarly, we can write out a partition function for the
corresponding coarse-grained (CG) system shown in Figure 1c
as
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If eq 7 is evaluated at zf = D, it follows that
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We notice that, in our new 2D surface model (Figure 1c), due
to the existence of the 2D hard wall, the accessible area to the
center of mass of the fluid particle at a specific z-position is
restricted. Carrying out the integration in eq 8, we obtain

ϕ
= =

=
Λ

−
=‐i

k
jjjjj

y
{
zzzzzQ z D

A z D z D

k T
( )

( )
exp

( )
CG f

CG f
3

AW FEA f

B

(9)

where ACG(zf) = 2LaLy is the accessible area in the xy-plane
and is a function of the z-position of the fluid particle; Ly is the
simulation box length in the y-direction.
The mapping between the atomistic model and the coarse-

grained model follows by equating the free energy (i.e.,
partition function) of both systems (eqs 6 and 9), and for an
arbitrary zf value, it gives

23

=Q z Q z( ) ( )CG f full f (10)

If we further assume a simulation box with box length Lx in the
x-direction, eq 10 leads to the equation for the effective AW-
FEA solid−fluid potential compatible with the new 2D coarse-
grained surface model

ϕ
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where the accessible area fraction is

η = = =z
A z

A

L z L

L L
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L
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full
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where the accessible length parameter La depends on the z-
position of the fluid particle. If the full substrate is simply
mapped to a structureless solid with a perfectly flat surface,
considered as in Figure 1b, η = 1 remains the same across the
whole system, then eq 11 reduces to the original FEA potential
form23

ϕ
= − −

{ }
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k
jjjjj

y

{
zzzzz
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U z
k T
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ln exp

( )

x y

FEA f
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sf
full
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B
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Area-Weighted Free-Energy Averaging Procedure. In
this section, we will discuss the procedures to obtain the
accessible area fraction η, accessible length La, and the AW-
FEA solid−fluid potential, ϕAW‑FEA, for the new 2D surface
model described in Figure 1c.
Following eq 11, we first need to determine the accessible

area fraction η as a function of the z-position of the test fluid
particle. From the physical perspective, the parameter η depicts
the fraction of accessible area to the center of mass of the test
fluid particle with respect to the whole xy-plane. For a specified
solid model, we can compute this accessible area fraction η by
performing a series of brute force Monte Carlo simulations. In
each individual simulation, a single test fluid particle is
iteratively placed at a random position on the xy-plane but with
a fixed vertical distance to the basal plane. After each random
placement of the test particle, the center-of-mass distance
between the test particle and all solid atoms will be calculated.
When any center-of-mass distance is smaller than a preset
minimum distance rmin, the test particle overlaps with the solid
(inaccessible); otherwise, we count this configuration as a
successful attempt (accessible). If each simulation generates a
total of Nconfig configurations, among which Nacc are counted as
successful attempts, the accessible area fraction η at a z-
position, zf = D, can be calculated by

η = =z D
N

N
( )f

acc

config (14)

From eq 12, the accessible length parameter La in the 2D
coarse-grained surface model can then be computed by

η
= =

=
=L z D

z D L N L
N

( )
( )

2 2
x x

a f
f acc

config (15)

Equations 14 and 15 extract the structural information from
the atomistic substrate and map it to that of the corresponding
2D surface model (Figure 1c).
The next step is to extract the energetic information from

the “bottom-level” atomistic model. Based on eq 11, a direct
route to the effective energetic potential ϕAW‑FEA is from the
molecular simulation. Similarly, we carried out a series of
simulations, each of which involves a single test fluid particle
iteratively being placed at a random position on the xy-plane
with a fixed vertical distance zf = D to the basal plane. The
effective potential ϕAW‑FEA is then calculated as an ensemble
average

∑

ϕ
η

=
= −

=

× −
=

‐

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
i

k

jjjjjj
y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

z D

k
T

z D N

U x y z D

k T

r

( )
ln

1
( )

exp
( , , , )

i

N N

AW FEA f

B f config

1

sf
full

s f f f

B

config s

(16)
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where σsf and εsf are Lennard-Jones (LJ) size parameter and
energy parameter for solid (s)−fluid (f) interaction,
respectively; rsjf is the center-of-mass distance between the
solid atom j and the single fluid particle. Here, we take the
pairwise solid−fluid interaction to have the form of the LJ
potential, but in principle, it can be replaced by any other form
of the many-body realistic potential to describe the full system.
Averages for both accessible area fraction η and effective

potential ϕAW‑FEA were taken over Nconfig = 108 random
configurations for each simulation with a fixed z-position for
the single fluid particle. We did not observe a significant
difference in the ensemble average when increasing the
number of configurations. In the simulations, the relative
positions of the fluid-basal plane were discretized using a
histogram with a bin size of 0.01σff. Periodic boundary
conditions were only applied in the x- and y-directions. A
cutoff distance rc = 5σff was applied to the pairwise Lennard-
Jones potential, and the potential was truncated at rc. The LJ
potential parameters for the substrate carbon atoms and argon
molecules are listed in Table 1, and the solid−fluid (sf) cross-

interaction parameters were calculated by the Lorentz−
Berthelot combining rules, i.e., σsf = (σss + σff)/2 and
ε ε ε=sf ss ff . The simulation box size, 34.43317 Å × 34.08
Å (Lx × Ly), was used to satisfy the periodicity requirement of
the graphene structure in the xy-dimension. The box length in
the z-dimension was large enough to ensure that the test fluid
particle can be elevated to a height where no solid−fluid
interactions are present. Forte et al.23 used a generic Mie
potential to fit the discrete effective solid−fluid potential, but
in the case of the defective surface model, the Mie potential
cannot result in a satisfactory fitting. Therefore, in this work,
we used the numerical values of the potential ϕAW‑FEA and
accessible length parameter La and applied linear interpolation
to evaluate the missing data.
Grand Canonical Monte Carlo Simulation. Grand

canonical Monte Carlo (GCMC) simulations27 were carried
out to test the new 2D surface model for geometrically
heterogeneous surfaces. The number and positions of substrate
atoms, the chemical potential of adsorbates, the accessible
volume of the system, and temperature were fixed in the
simulation. The simulation box dimension, 34.43317 Å ×
34.08 Å (Lx × Ly), was used in both the full simulation and the
corresponding CG simulation for convenience, but in
principle, the box size of the CG simulation does not depend
on that of the full simulation. A slit-like pore geometry was

used to model the solid substrate. Two symmetric solid blocks
were placed at both ends of the simulation box in the z-
direction, and the separation between those two substrates was
large enough to model the adsorption on two independent
open surfaces. Periodic boundary conditions were applied in
the x- and y-directions. Solid−fluid interactions in the
atomistic system and fluid−fluid interactions were modeled
by the standard 12−6 Lennard-Jones potential, and a cutoff
radius rc = 5σff was chosen. Lennard-Jones parameters required
in simulations are listed in Table 1, and cross-interaction terms
were calculated from the Lorentz−Berthelot combining rules.
Each GCMC simulation consisted of (2−5) × 107 moves for
equilibrium. The statistics were sampled from the following
(2−5) × 107 production moves. For the state points that are
close to the saturation pressure, at least two independent runs
were performed, and the excess adsorption amounts were
averaged from these independent runs. The probabilities of
making a displacement, an insertion, and a deletion of an
adsorbate molecule were set to 0.9, 0.05, and 0.05, respectively.
The production stage was divided into blocks, each of which
consisted of 1 × 105 MC steps, and standard deviations were
calculated from these blocks. Chemical potentials of Ar and N2
at 87.3 and 77 K were obtained by the Widom insertion
method28 in isothermal−isobaric (NPT) Monte Carlo
simulations.

■ RESULTS AND DISCUSSION

The new 2D surface model can be constructed for any solid
substrate with a geometrically heterogeneous surface. We
particularly chose Cabot BP-280, a nonporous, nongraphitized
activated carbon material,31 here as one illustrative example to
show the superiority of our 2D surface model over the
conventional 1D surface model. Cabot BP-280 is commonly
used as a reference material representing a wide range of
partially graphitized active carbon materials. Scientists usually
fit the potential parameters in their DFT method6−9 and
molecular simulation models29 to the experimental BP-280
data to get some sense of how well their model can represent a
real defective activated carbon surface. Here, we modeled BP-
280 as a collection of two perfect graphene sheets and a
nongraphitized surface with ABA stacking pattern. The spacing
between two adjacent graphene layers was 3.35 Å. The degree
of geometric defects on the top layer was controlled by two
parameters: the percentage of defects, Pd, and the effective
defect radius, Rc. To create the defects, we randomly selected a
carbon atom on the top layer and then removed it as well as its
surrounding atoms within an effective defect radius Rc from the
selected atom. The deletion move was repeated until the
percentage of removed atoms reached the percentage of defect
Pd. More details can be found in ref 1. The excess adsorption
on the surface was calculated by

ρ
Γ =

⟨ ⟩ −N V

S
f bulk

(18)

where angular bracket denotes the ensemble average, V is the
accessible volume for adsorbates, ρbulk is the bulk density of
adsorbate molecules at pressure P, and S is the surface area,
which was measured by the computational BET method.1

To build an atomistic model of BP-280, we computed the
adsorption isotherms of Lennard-Jones (LJ) argon at 87.3 K
onto the solid substrate model with various combinations of Pd
and Rc by GCMC simulations and tentatively selected several

Table 1. Lennard-Jones (LJ) Potential Parameters Used in
the Monte Carlo Simulations13,29,30

ε/kB (K) σ (Å)

C (of substrate) 28.0 3.4
Ar 119.8 3.405
N2 101.5 3.615
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promising adsorption isotherms against the experimental BP-
280 data.32 To further decide the best one, we need an
accurate surface area of each model to convert units of the
simulation results to that of the experimental data. We
performed a series of GCMC adsorption simulations of N2
at 77 K, and good linearity was found at the relative pressure
range from 0.07 to 0.25, which is similar to the relative
pressure range (0.06−0.25) in the experimental determination
of BET surface area of Cabot BP-280.31 A cross-sectional area
of nitrogen molecule of 16.2 Å2 was used to calculate the total
area of the modeled surface.1,32 Finally, we picked one surface
model that gives the best agreement with the experimental data
(see Figure 2a), and the corresponding parameters for the top

defective layer are Pd = 30% and Rc = 7.1 Å. The percentage of
defects in our infinite BP-280 surface model is very close to
that of Pd = 29% obtained in the finite surface model.29 The
computational BET method shows that the surface area for the
current atomistic model of BP-280 (with Pd = 30% and Rc =
7.1 Å) is 1317.14 Å2, which is about 12.2% greater than that of
the perfect graphene surface (Lx × Ly = 1173.48 Å2). To check
the independence of the constructed BP-280 surface model on
the adsorbate and temperature, we also compared the
simulated excess adsorption of N2 at 77 K against the available
experimental BP-280 data.31 Figure 2b shows a quantitative
agreement between the simulated N2 adsorption data and the
experimental BP-280 data over a wide range of pressure
considered. We did not attempt to do an exhaustive search of
any possible combination of Pd and Rc, but the simulation
results in Figure 2 confirm the independence of the current
model on the adsorbates and temperature and give us
confidence in the physical significance of the chosen
parameters. The configuration of the geometrically heteroge-

neous surface model representing BP-280 is shown in Figure
3a. It should be noted that the method used here to construct

the atomistic surface model1 is not robust in the low-pressure
region. We have run adsorption simulations on the other three
defective surface samples in addition to the current one with
the same Pd and Rc parameters. The adsorption isotherms
agree perfectly in the high-pressure region but differ slightly at
the low-pressure region (P/P0 ≲ 1 × 10−3); such deviations at
low pressures result from the random nature of the algorithm
in constructing the surface vacancies. Because we will use the
same model for both the full system and the coarse-grained
system, the deficiency in the construction of the atomistic
surface model does not interfere with the validation of our
coarse-grained models. In the interests of robustness and
reproducibility, a more sophisticated atomistic surface model is
desired in the future.
Now, we follow the procedure to construct a 2D surface

model for the atomic BP-280 solid. Unless otherwise stated, all
of the following simulations are for the adsorption of argon
onto the surface at 87.3 K. Here, we assume that the position
of the basal plane (i.e., z = 0) in the coarse-grained system
corresponds to that of the second graphene layer in the full
system. For the calculation of accessible area fraction η, a
minimum distance of rmin = 3.4025 Å was used; the choice of
this specific value is based on the Lorentz combining rule, σsf =
(σss + σff)/2, of the LJ size parameter for the carbon atom (σss
= 3.4 Å) and for the argon particle (σff = 3.405 Å). Once the
structural information of the atomic BP-280 model is obtained
from eqs 14 and 15, we can construct the corresponding 2D
surface model shown in Figure 3b. The boundary of the hard
wall is quantitatively drawn based on the simulation results of
the accessible length parameter La (numerical data of η and La
are available in Tables S1 and S2, respectively). As expected,
when zf is very small, η ∼ 0 and La ∼ 0 Å. As the position of
the fluid particle is commensurate to that of the vacancies in
the top layer, fluid particles can fit into those pits, but the
accessible area in the pit is restricted due to the strong
repulsion between the fluid particle and the solid atoms. When
the fluid particle is elevated high enough away from the
surface, the accessible area at that z-position becomes the
whole xy-plane, thus η = 1; following eq 15, the accessible

Figure 2. Comparison of simulated adsorption isotherms of (a) Ar at
87.3 K and (b) N2 at 77 K on BP-280 surface model (with Pd = 30%
and Rc = 7.1 Å for the top defective layer) with experimental data.31,32

P0 is the bulk-phase saturation pressure. The specific surface area of
40.2 m2/g31 was used to convert the experimental volumetric data.

Figure 3. Configuration of the Cabot BP-280 model with Pd = 30%
and Rc = 7.1 Å for the top defective layer. (a) Snapshot of the side
view of the atomistic substrate (bottom) with top defective layer
colored in blue (top). Carbon atoms are drawn to reduced scale for
clarity. (b) Corresponding 2D surface model for the BP-280 solid.
The boundary of the hard wall is quantitatively drawn based on the
MC simulation results of the accessible length La. Blue dashed line is
the trace of the center of mass of argon molecules (white particles)
while rolling over the surface.
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length La now equals half of the simulation box length Lx in the
x-direction, and the shape of the hard wall flattens. We also
calculated the geometric surface area of the corrugated hard
wall (i.e., the Connolly surface area), and it was about 1382 Å2,
very close to the computational BET surface area of the
atomistic BP-280 model (1317.14 Å2). This agreement
confirms that the new coarse-graining scheme can reasonably
extract the structural information of the surface from the fully
atomistic substrate. To be consistent, we used the computa-
tional BET surface area of the atomistic model in the
calculation of excess adsorption amount for both full
simulation and corresponding coarse-grained simulation.
After getting the accessible area fraction η, we can

numerically calculate the area-weighted (AW) energetic
potential ϕAW‑FEA by carrying out brute force Monte Carlo
simulations following eq 16. Figure 4 shows the potential

ϕAW‑FEA as the energetic part of the total solid−fluid potential
for the 2D surface model representing the BP-280 solid. The
conventional free-energy-averaged (FEA) potential ϕFEA of eq
13 is also plotted in the figure for comparison. Both the FEA
and AW-FEA potentials show two potential minima over the
full range. The first potential minimum (z ∼ 3 Å) is due to the
strong attraction of the active vacancies in the surface and the
second potential minimum (z ∼ 6.5 Å) arises from the
contribution from the whole solid substrate, and its position
corresponds to the center-of-mass position of a fluid particle
lying on the flat surface (see the blue dashed line in Figure 4).
When the fluid particle is close to the surface, it can feel the
strong attractions from the active vacancies, and η < 1 leads to
a deeper first potential minimum for ϕAW‑FEA than that for the
conventional FEA potential. At large distance from the surface,
the accessible area fraction η is close to 1 and it has little
impact on the shape of the potential; thus, the second
minimum overlaps for both potentials. In the 2D surface
model, there is a 2D hard wall above the background
continuum solid. When the fluid particle overlaps with the
hard wall, the potential ϕAW‑FEA goes to infinity, which results
in a discontinuity at the first potential minimum (see point “A”
in Figure 4). Numerical data of ϕAW‑FEA for the 2D surface
model representing the BP-280 solid are stored in the
“cg_wall.txt” file in the Supporting Information.

To further validate our new 2D surface model, we computed
the excess adsorption isotherms for argon at 87.3 K on the
Cabot BP-280 solid. The comparison among the fully atomistic
model and the new 2D surface model with the effective AW-
FEA potential and the conventional 1D surface model with the
effective FEA potential is shown in Figure 5. The adsorption

isotherm by the 2D surface model is in excellent agreement
with the full simulation, taking into account the wide range of
relative pressure from 1 × 10−5 to 1. The 1D surface model
represented by the effective FEA potential, however, is unable
to reproduce the correct shape of the adsorption isotherms,
and as expected, it overestimates the excess adsorptions more
severely than that found in ref 23. In contrast to the adsorption
isotherm produced by the 1D surface model, which shows a
“step” around the relative pressure of 2 × 10−4 associated with
the layering transition on the flat structureless surface, the
shape of the adsorption isotherm for the fully atomistic
substrate and the 2D surface model is very smooth. The reason
for this difference is that the 1D surface model does not allow
for the vacancies on the surface and it only describes the
adsorption behavior on a perfectly flat surface. For a real
heterogeneous surface, the fluid atoms will first adsorb onto
the highly active vacancies; once they occupy those vacancies,
the adsorption on other surface sites then starts. However, due
to the limited number and sizes of the vacancies, there are few
fluid particles that can be fitted into the defects. The above
argument is further supported by Figure 6 showing the density
profile of the fully atomistic model and of the coarse-grained
surface model. We can see that the 1D surface model with the
effective FEA potential shows prominent first layer adsorption
on the flat surface at z = 3−4 Å, which corresponds to the first
potential minimum in Figure 4. In comparison, the 2D surface

Figure 4. Comparison between the effective AW-FEA potential (red
curve), ϕAW‑FEA, for the 2D surface model and the conventional
effective FEA potential (green curve), ϕFEA, associated with the 1D
surface model for the BP-280 solid (Pd = 30% and Rc = 7.1 Å). The
adsorbate particle is modeled as LJ argon at 87.3 K. Background 2D
coarse-grained model is taken from Figure 3b. Point A indicates the
discontinuity in the effective AW-FEA potential.

Figure 5. Excess adsorption isotherms of argon at 87.3 K on the BP-
280 solid (Pd = 30% and Rc = 7.1 Å) by different surface models. The
only difference between (a) and (b) is the use of a logarithmic scale
for the y-axis in (b). P0 is the saturation pressure of bulk-phase argon
at 87.3 K.
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model with the AW-FEA potential allowing for the geometric
defects on the surface reproduces the same and correct first
layer adsorption in geometric vacancies as in the full model,
which indicates that the addition of one more dimension to the
coarse-grained surface model and the introduction of the
accessible area fraction η to the traditional free-energy-
averaged scheme are essential to predict the correct adsorption
behavior on the geometrically heterogeneous surfaces.
Despite the overall improvement in the predictive quality of

the adsorption isotherm and density profile by the 2D surface
model, it still overestimates the excess adsorption at the
middle-pressure range, i.e., from the relative pressure of
0.001−0.01. Figure 6 also indicates this overestimation in the
second adsorbed layer around z = 6−7 Å associated with the
adsorption on the outer surface (corresponding to the second
potential minimum in Figure 4). The inaccuracy over this
pressure range originates from the intrinsic deficiency of the
1D AW-FEA potential, ϕAW‑FEA. As illustrated in Figure 7, due
to the existence of the surface vacancies, the adsorption energy
across the outer surface is heterogeneous for the real atomistic
model, showing strong attraction on perfect lattice sites and

weak attraction near the defected lattice site (vacancies). Such
heterogeneity leads to the anisotropic density distribution of
the particles on the outer surface. For the 2D surface model,
however, the effective potential ϕAW‑FEA shows the energetic
variation only in the z-direction and assumes energetic
homogeneity in the other two directions (x- and y-directions),
thus generating a uniform distribution of the fluid particles
across the outer surface. Adding one more dimension to the
effective potential ϕAW‑FEA in the x- or y-direction would
possibly solve this discrepancy but with a higher computational
expense.
To confirm the universal applicability of our new 2D surface

model, we tested another three nongraphitized graphitic solids
with the top defective surface having Pd of 5, 30, and 50% and
Rc of 2.84, 5.68, and 8.5 Å. Figure 8 summarizes these three
testing cases and includes snapshots of the top defective layer,
corresponding 2D coarse-grained surface model, comparison
between the effective AW-FEA potential, ϕAW‑FEA of eq 11,
with the traditional FEA potential, ϕFEA of eq 13, and excess
adsorption isotherms by different surface models. From the left
to the right column, the combination of Pd and Rc indicates the
increment of the geometric roughness of the top surface.
Accordingly, the size of the geometric vacancy in the 2D
surface model also increases, confirming again that the 2D
surface model can extract the important structural information
from its atomistic counterpart. Looking at the shape of the
potentials, when the level of roughness is low (Pd = 5% and Rc
= 2.84 Å), the potential ϕAW‑FEA exhibits distinct differences in
both shape and minimum values from the conventional FEA
potential near the first potential minimum, and such
differences in the potential are reflected by the large
discrepancies in the excess adsorption isotherms. As the
roughness of the top surface increases, the shape of the AW-
FEA and FEA potentials becomes more similar but still differs
in the first potential minimum due to the introduction of
parameter η into the AW-FEA potential. The deeper first
minimum in ϕAW‑FEA ensures the correct adsorption amount at
extremely low pressures. Over the middle-pressure range
(0.001−0.01), deviations in adsorption isotherms between the
2D surface model and the fully atomistic model are observed
again and get worse with higher levels of surface roughness.

Figure 6. Density profile of the adsorbed argon molecules on the BP-280 solid surface (Pd = 30% and Rc = 7.1 Å) in the z-direction (perpendicular
to the surface) by different surface models at 87.3 K.

Figure 7. Snapshots of the argon (cyan particles) adsorbed on the
fully atomistic BP-280 solid surface (in gray color, Pd = 30% and Rc =
7.1 Å) and on the new 2D coarse-grained surface model at a bulk
pressure of 0.01 bar, 87.3 K, showing the energetic heterogeneity of
the full potential across the outer surface exerted by the atomistic
substrate (left figure) and the energetic homogeneity of the 1D
effective solid−fluid potential ϕAW‑FEA in directions parallel to the
outer surface (right figure). For the 2D surface model, the
structureless wall below the adsorbed layer is not shown.
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The reason is that when the surface becomes more defective,
the energetic heterogeneity gets more distinct for the perfect
lattice site and the defective vacancies, and the 1D potential
ϕAW‑FEA deviates more from the real situation. In general, the
2D surface model significantly improves the overall accuracy of
the predicted adsorption isotherm over the traditional 1D
surface model, which is based on the original FEA potential.

■ CONCLUSIONS

In this study, we present a bottom-up strategy to construct the
coarse-grained (CG) surface model and the corresponding
effective solid−fluid potential with a low-dimensional position-
al dependence for a heterogeneous surface substrate. Instead of

fitting the model parameters to the top-level experimental
adsorption data as the traditional top-down method, the
bottom-up strategy is based upon obtaining the coarse-grained
parameters directly from the bottom-level atomic model.
Specifically, for the solid substrate with a geometrically

heterogeneous surface, we proposed a numerical method to
construct a corresponding two-dimensional (2D) coarse-
grained surface model. The total potential model is composed
of two parts: the structural part is a 2D hard wall potential
representing the geometric defects in the atomistic heteroge-
neous surface, and the energetic part is a 1D effective area-
weighted free-energy-averaged (AW-FEA) potential represent-
ing the solid−fluid interactions averaged over the directions

Figure 8. Application of the new 2D surface model based on the effective AW-FEA potential to three nongraphitized surfaces with different levels
of roughness. The 2D surface models are drawn in the same way as in Figure 3b. See the text for details.
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parallel to the surface at a certain z-distance. In the
computation of the effective AW-FEA potential, the free
energy of the full system is mapped to the free energy of the
coarse-grained system containing a 2D surface model. A new
parameter η containing the accessible area information for the
fluid particle close to the surface naturally appears; the
introduction of this surface-structure-related parameter allows
us to incorporate the structural dependence into the effective
solid−fluid potential on the atomistic substrate. By using the
new AW-FEA scheme, an accurate but coarse-grained
representation of any defective atomistic surface model can
be established without being restricted by the defective
crystalline structure of the solid substrate, as is the original
free-energy-averaged method.23 Monte Carlo simulations were
carried out to get basic parameters for the new 2D surface
model from the fully atomistic substrate. The simulation
results show that the hard wall configuration in the new 2D
surface model retains the structural details from the full system.
Grand canonical Monte Carlo simulations were performed for
the argon adsorption onto a widely used reference non-
graphitic substrate, BP-280, to test the validity of the 2D
surface model against the fully atomistic system. The
simulation results indicate that adding one more dimension
to the conventional 1D surface model based on the effective
FEA potential is essential to reproduce the correct adsorption
behavior with minimal increase of the computational expense;
in particular, the 2D surface model significantly improves the
adsorption isotherm and density profile compared to the
traditional 1D surface model over a wide range of pressure.
The further test of another three nongraphitized substrates
with different levels of geometric roughness for the top layer
confirms the effectiveness and accuracy of the new 2D surface
model. We found that despite the mostly quantitative
agreement of the adsorption isotherm between the fully
atomistic model and the 2D surface model, the latter still
slightly overestimates the adsorption amount over a middle-
pressure range. This is believed to be an intrinsic deficiency of
the 1D effective AW-FEA potential, where the energetic
variation is present only in the direction perpendicular to the
surface while being energetically homogeneous in the other
two directions. This overestimation might be solved by
introducing another dimension (degree of freedom) into the
1D AW-FEA potential.
Although we consider only the geometrically heterogeneous

surface case, here, we believe that this bottom-up strategy
could also be developed to deal with energetically heteroge-
neous surfaces. To account for the surface energetic sites, it
should be possible to apply the conformal sites theory4 to
simplify the current analytical solid−fluid potential. The
conformal sites theory states that an energetically heteroge-
neous real surface can be mapped to an energetically
homogeneous reference surface. We briefly outline such an
approach in the Appendix and plan to develop this further in
future work. During the preparation of this manuscript, we
became aware of an independent work on the development of
coarse-grained solid−fluid potentials for heterogeneous
surfaces that has been carried out by Ravipati et al.33

Interested readers should refer to their work for more details.
As for current software embedded in experimental

sorptometers, simulation results are precalculated and stored
in the software. As computing power increases, it will be
possible to run real-time coarse-grained simulations and
theoretical calculations (e.g., density functional theory) on

personal computers. An accurate, flexible but simple potential
is essential in getting reliable data on time. The use of the CG
surface model and its compatible effective solid−fluid potential
will enable faster execution in computer simulations and easier
manipulation in theories.

■ APPENDIX

Coarse-Grained Description of Solid−Fluid Interactions for
Energetically Heterogeneous Surface Model
On most real surfaces, there are not only geometrical defects
but also energetic heterogeneities due to chemical composi-
tion, impurities, and functional groups attached or deposited
onto the surface. An effective or analytical expression for the
solid−fluid potential is desirable for such anisotropic
interactions of adsorbate molecules with energetically hetero-
geneous surfaces. However, due to so many potential
parameters for different energetic sites on the surface, the
traditional direct integration is impossible to perform.
Theoretical attempts have been made in the DFT method8,11

and in statistical associating fluids theory34 to account for the
energetically heterogeneous surface, but again, these ap-
proaches require fitting model parameters to the top-level
experimental data and have limited connections to the “atomic-
level” substrate. Recently, we developed a conformal sites
theory,4 stating that a real interfacial system with an
energetically heterogeneous surface can be mapped onto a
reference system with an energetically homogeneous surface.
Such a mapping process is realized by doing the perturbation
expansion of the free energy of a real system about that for a
reference system, and the potential parameters for the
reference system are then obtained by annulling the first-
order terms in the perturbation expansion. It is shown that the
theory can generally give quantitatively good estimates of the
surface excess for the adsorption on a highly heterogeneous
surface even when the surface sites differ in LJ energy
parameters by a factor of 5, in LJ size parameter by a factor of
1.1, and in partial charge by a factor of 3−10 depending on the
type of molecules.4 The conformal sites theory can simplify the
theoretical treatment of the energetically heterogeneous
surfaces and provide a flexible and accurate way to account
for solid−fluid interactions. If we assume a solid substrate with
a geometrically uniform surface made up of different
adsorption sites, of species α, β, ..., among which are included
the main composition of the solid substrate (s); these
heterogeneous sites are assumed to be present only on the
surface of the solid substrate and interact with fluid particles
through Lennard-Jones interactions. By applying the conformal
sites theory to the conventional 1D coarse-grained model
shown in Figure 1b, we can write out an effective solid−fluid
potential ϕsf in a general form

8 for the adsorption of pure fluids
on such an energetically heterogeneous surface model

ϕ ϕ ϕ= + ∞z z z( ) ( ) ( )sf f 1 f f (A1)

where the first term ϕ1 on the right is the potential of
interaction with the energetic surface and ϕ∞ is the potential of
interaction with the rest of the solid.
Specifically, if we presume the solid substrate to be a

graphitic substrate with a geometrically perfect but energeti-
cally heterogeneous surface, these potentials can then be
formulated in the form of 10-4-3 Steele potential8,13

Langmuir Article

DOI: 10.1021/acs.langmuir.9b00440
Langmuir 2019, 35, 5975−5986

5984

http://dx.doi.org/10.1021/acs.langmuir.9b00440


ϕ πρε σ
σ σ

= Δ −

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj

y

{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
z

z z
( ) 2

2
5x x

x

f

x

f
1 f s

2

10 4

(A2)

ϕ
πρε σ

= −
+ Δ∞ z

z
( )

2

3( 0.61 )f
s sf sf

6

f
3

(A3)

where zf is the distance of a fluid particle from the graphite
surface, ρs is the density of carbon atoms in graphite (ρs =
0.114 Å−3), and Δ is the spacing between two adjacent
graphene layers (Δ = 3.35 Å). The solid−fluid (sf) energy
parameter εsf and size parameter σsf are calculated from the
Lorentz−Berthelot combining rules. The reference solid−fluid
energy parameter εx and size parameter σx represent the
average energy parameter and size parameter, respectively, for
a fluid particle interacting with the main surface atoms and
various energetic adsorption sites on the surface. They can be
calculated by4
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where xα is the mole fraction of the surface sites of species α;
εαf and σαf are the LJ energy parameter and size parameter,
respectively, for the pair of the surface site of species α and
pure fluid particle (f). Summations are over all types of the
surface sites. Once we know the mass/mole fractions of each
surface site type from experiments (e.g., XPS), we can calculate
conformal sites parameters εx and σx and hence construct an
effective potential (eq A1) for such an energetically
heterogeneous surface. It is also possible to construct an
analytical solid−fluid potential for an energetically heteroge-
neous surface with well-defined geometric defects. In that case,
it is necessary to introduce another degree of freedom (either
in the x-direction or in y-direction) to eq A1. Examples are
surface defects of a saw-toothed profile with a rectangular
shape,14,15 triangular shape (stepped surface),16 and trigono-
metric function shape.8 In the case where energetic sites only
are distributed on the partial surface or are localized in an area,
the derivation of such an analytical potential requires the
integration over part of the surface, and the total solid−fluid
potential is just a linear combination of each contributing part.
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