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ABSTRACT: Crystal nucleation studies using hard-sphere and
Lennard-Jones models have shown that the actual (mechanical)
pressure within the nucleus is lower than that in the surrounding
liquid. Here, we use the mechanical route to obtain the pressure for
an ice nucleus in supercooled water (TIP4P/Ice) at 1 bar and 247
K. From this pressure, we obtain the interfacial stress using a
thermodynamic definition consistent with mechanical arguments.
Moreover, we compare the mechanical pressure with the
thermodynamic pressure of bulk ice at an equal chemical potential
and the interfacial stress with the interfacial free energy.
Furthermore, we investigate these properties on the basal plane.
We find that unlike in hard-sphere and Lennard-Jones systems,
mechanical and thermodynamic pressures agree for the nucleus,
and the interfacial stress and free energy are comparable. However, the basal interface displays an interfacial stress nearly twice its
interfacial free energy, suggesting that this agreement may be dependent on the system, underscoring the limitations of mechanical
routes to solid−liquid interfacial free energies.

I ce nucleation is a critical process in nature and many
technological fields.1,2 However, investigating critical nuclei

is difficult, as nucleation events may take seconds to occur but
may last for only a few nanoseconds. Computer simulations
have significantly contributed to our understanding of this
process.3 In particular, molecular dynamics simulations in the
NVT ensemble provided a means not only to simulate crystal
nucleation but also to stabilize critical nuclei,4,5 allowing us to
study them in great detail. This has made it possible to
carefully study the critical crystal nuclei of hard spheres
(HS)6,7 and Lennard-Jones (LJ) particles,8 showing that the
pressure inside is lower than that outside. Indeed, earlier work
on hard spheres with short-range attractive interactions9 and
on binary mixtures10 had implicitly indicated this, as reflected
in the reported densities. These observations are, a priori, in
contradiction with the Young−Laplace equation

p
R
2=

(1)

where Δpμ is the difference in pressure assuming bulk phases
(Δpμ = pIdh

μ − pw for ice Ih and water, respectively, in this
work) and γ > 0, where γ is the interfacial free energy for a
dividing surface defined as the surface of tension located at R.
Following ref 6, pIdh

μ is the thermodynamic pressure of the ice
nucleus (i.e., the pressure of bulk ice at the same chemical
potential μ as the external fluid). The apparent conflict resolves
once we recognize that the thermodynamic behavior of the

crystal nuclei differs from that of the bulk crystal. Since eq 1
employs reference bulk states, it does not matter that at a given
chemical potential and temperature, the actual (mechanical)
pressure of the nucleus differs from that of the bulk.6 The true
(mechanical) pressure of the nucleus is not directly related to
γ; instead, it is related to interfacial stress f.7 Similar to the
Young−Laplace equation, f can be defined thermodynamically
as7,11,12

p
f

R
2=

(2)

where Δp = pIdh
− pw is the actual difference in pressure

between the two phases. Notice how true (mechanical)
pressure pIdh

may be incorporated into a thermodynamic
description (see also the Supporting Information). The origin
of discrepancies in pressure between an ideal bulk crystal and
the core of the nucleus at the same μ likely lies in the
concentration of defects and possibly in the presence of
strain.7,12,13
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The radii of curvature R in both eqs 1 and 2 are often
assumed to be equal for the sake of simplicity, but this is an
approximation. Moreover, a mechanical route to γ in solid−
liquid interfaces has not been successful to date,3 while several
expressions have been proposed for f.7,8,14,15 At the root of all
of this uncertainty is the arbitrariness in both (i) the location
of the dividing surface in Gibbs’ thermodynamics and (ii) the
definition of the pressure tensor in mechanics.16 Furthermore,
the fact that γ = f in planar fluid−fluid interfaces and γ ∼ f in
curved fluid−fluid interfaces (except for small droplets or
confined systems where they may differ notably17−26) has
often led to misunderstandings of the solid−liquid interface.
Nevertheless, Gibbs already noted that the tension of the
surface, meaning γ, did not refer to the true tension, meaning f.
However, Gibbs wrongly believed that the differences would
be negligible in most cases.27

Despite some remaining uncertainties, our understanding of
solid−liquid interfaces has significantly improved thanks to
computer simulations, which have allowed researchers to
confirm that f is often negative in solid−liquid planar28−33 and
spherical3,6,8 interfaces, drastically differing from γ, which is
always a positive property. Moreover, systems may present f <
0 in some crystallographic planes while in others f > 0.34,35

Mechanically, f is rooted in the stress profile S(r) = PN(r) −
PT(r), where PN(r) and PT(r) are the normal and tangential
components, respectively, of the pressure tensor and r is the
position along the axis normal to the interface. Notably, S(r)
can be nonuniform with both positive and negative
contributions depending on the interfacial layer.36,37 This
nonuniformity was also observed at the water−vapor inter-
face,38 even though in planar fluid interfaces f typically
coincides with γ. Becker et al.39 suggested that the density
difference between the two phases and the bonding energy
play an important role in f, whereas Eriksson and Rusanov40

hypothesized that solid−liquid interfaces with high mobility
could lead to f = γ. Recent work indicates that in a few cases,
this could be the case for the planar ice−water interface. In ref
41, a thermodynamic formalism for fluid interfaces was
reasonably successful in describing the planar ice−water
interface using TIP4P/Ice.42 In contrast, studies using the
mW model43 revealed in ref 33 showed that while f and γ are
the same at one particular point of the coexistence line, they
differ for most melting temperatures.
Here, we test whether the significant discrepancy between f

and γ during nucleation observed in simple models also occurs
for an important substance like water. In addition, we compare
these two quantities for the basal plane at coexistence. In the
following, we present the simulation details and then discuss
the results�mainly γ, f, pIdh

μ, and pIdh
�for the ice nucleus.

Finally, we examine the properties of the basal plane and
conclude with a discussion and summary.
We use the TIP4P/Ice water model42 simulated using

GROMACS-2021.3-mixed with (i) a time step of 2 fs, (ii) the
Nose-́Hoover thermostat (relaxation time of 1 ps) fixed at 247
K (nucleus) and 270 K (basal plane), (iii) the Parrinello−
Rahman barostat (relaxation time of 2 ps) fixed at 1 bar
(isotropic for the nucleus and applied normal to the interface
while the lateral dimensions of the box are kept fixed for the
basal plane44), (iv) the particle-mesh-Ewald algorithm of order
4 and a Fourier spacing of 0.1 nm, (v) a cutoff of 0.9 nm in
both Lennard-Jones and Coulomb interactions, and (vi) long-
range corrections to the Lennard-Jones term. The dispersion

correction contribution to the pressure yields −350.9 bar in
the nucleus and −337.4 bar in the basal plane. Despite known
artifacts,45,46 long-range cutoff corrections were retained to
ensure consistency with the force-field parametrization, given
the modest density difference between ice and liquid water.42

Following previous works on hard spheres and Lennard-
Jones, we attempted to stabilize an ice nucleus in the NVT
ensemble.5−8 However, after some failed attempts, we opted
for generating trajectories in the NpT ensemble from a critical
nucleus determined previously via the seeding approach.47

When the system contains a critical nucleus, it is in an unstable
equilibrium. Although a small perturbation should cause the
system to depart from its original equilibrium state, this is a
stochastic process; there may exist trajectories in which the
system does not quickly decide which final state it is going to
take. The long-lived nucleus trajectories can therefore be used
to analyze the mechanical properties in equilibrium in the NpT
ensemble. We select the trajectories in which the nucleus size
oscillates closely around the critical size for lifetimes at which,
in most trajectories, the critical nucleus size would have already
changed by ∼60%. We found six of 40 trajectories in which the
nucleus survived for about 50 ns each at 247 K and 1 bar,
allowing us to gather 300 ns. A limitation of the NpT versus
NVT approach is that in NpT seeding we impose the critical
nucleus structure, and this often removes relevant degrees of
freedom that would have naturally evolved in a stable
equilibrium, provided sufficient time was allowed, e.g., the
stacking disorder of cubic and hexagonal ice.48 The system is
shown in Figure 1 and contains 78 856 molecules, of which

∼1500 belong to the nucleus. For the planar interface, the
system contained 20 736 molecules, about half being ice and
half being liquid. The cross-sectional area defining the interface
is determined to provide bulk behavior on the ice far from the
interface.
We proceed now by first describing the nucleus via the

Young−Laplace equation (eq 1). Interfacial free energy γ has

Figure 1. Snapshot of the critical nucleus configuration showing only
the molecules belonging to the nucleus.
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been widely investigated for the TIP4P/Ice water
model.41,49−51 Therefore, we estimate γ from the supercooling
ΔT using the empirical fit suggested in ref 41 γ = 26.6 − 0.174
× ΔT (mJ/m2), where ΔT = Tm − T. Given that melting
temperature Tm of the model is 270 K, in this case γ ∼ 23 mJ/
m2. Then, using eq 1, we can obtain pressure pIdh

μ of bulk ice at
the same chemical potential as that of the external liquid,
which is homogeneous throughout the whole system. To do
so, we need first both water pressure pw, which is equal to 1
bar, i.e., the average pressure in the system (see the Supporting
Information of ref 6), and the radius of the nucleus (R). In the
introduction, curvature effects in γ due to the location of the
dividing surface were not described for the sake of simplicity.
Nevertheless, to be precise, we should denote γ and R in eq 1
as γs and Rs, indicating that they are defined at a particular
location of the dividing surface within the interfacial region. In
particular, Rs is the surface of tension, at which the (notational)
derivative of γ with respect to the arbitrary location of the
dividing surface vanishes52,53 (see the Supporting Information
for further details). Determining Rs requires free energy
calculations to find the minimum in γ[R], where the square
brackets imply a variation with the location of the dividing
surface and not with the actual radius. However, it has been
shown empirically that a particular criterion based on order
parameter q6

54 to classify ice-like and water-like molecules
allows us to obtain a radius leading to agreement in free energy
barriers with those obtained from free energy calculations.47

We refer to refs 41, 50, and 55 for details on this criterion. The
number of ice-like molecules (NIdh

) is estimated from q6 using a
threshold of 0.365 and a cutoff of 3.5 Å. Cluster radius Rs is
then obtained from

R
N3

4s
I

I

1/3

h

h

=
i

k
jjjjjjj

y

{
zzzzzzz (3)

where ρIdh

μ is the number density of bulk ice (i.e., the number of
water molecules per unit of volume of ice Ih for TIP4P/Ice at
247 K and pIdh

μ). Since the density of ice barely changes with
pressure (∼0.5% over 500 bar50,56), we take it from bulk ice at
247 K and 1 bar even though bulk ice under such conditions
will not have the same μ as the liquid but a lower value. The
error introduced by this approximation is certainly smaller than
that introduced in Rs via an empirical definition. The mass
density of bulk ice at 247 K and 1 bar is ∼0.91 g/cm3. Hence,
number density ρIdh

μ ∼ 30.5 nm−3. As shown in Figure 2, NIdh
∼

1500 molecules and, finally, Rs is estimated from eq 3 to be ∼
2.3 nm. From these estimates and using eq 1, we find that pIdh

μ

∼ 200 bar. This way of defining the nucleus pressure is termed
thermodynamic pressure in the context of hard spheres in ref 6,
where it is shown that such a pressure can be obtained directly
by doing thermodynamic integration from coexistence. Note
that the thermodynamic pressure is always larger than the
external one. How far is this representation from the true
mechanical pressure of the nucleus? How does γ compare to f?
Gibbs believed that they would not be too different. However,
in simple systems like hard spheres6,7 and Lennard-Jones,8 this
is far from true since it has been observed that the true
mechanical pressure is smaller than the external pressure,
leading to f < 0, even though γ > 0 by definition.

To address these questions for the ice−water interface, we
analyze the trajectories to extract microscopic information. At
each time step, the center of mass (COM) of the nucleus is
determined. Molecules are then binned into concentric
spherical shells extending from the COM of the nucleus
toward the boundaries of the simulation box according to their
distance from the COM. The local density at a given distance
is obtained by counting the number of water molecules within
each shell and dividing by the corresponding shell volume,
yielding a density profile averaged over all directions. The
resulting density profile is shown in Figure 3a. As one can see
in this figure, the interface is not sharp. Only ice molecules
within 2 nm of the COM are in a density plateau, whereas the
interface spans almost the same length. Therefore, the actual
radius of the nucleus is between 2 and 3.5 nm, suggesting that
our previous estimate of Rs (∼2.3 nm) is reasonable. Also, the
actual density is in agreement with the mass density of bulk ice,
0.91 g/cm3, within the uncertainty. Therefore, the true
pressure of the nucleus (pIdh

) is expected to be in agreement
with that of pIdh

μ.
Indeed, pIdh

can be measured directly from molecular
dynamics trajectories using the virial (or mechanical)
route.16 Although the pressure tensor at a point is not
uniquely defined, Shi et al.57 recently showed that it is possible
to define a unique pressure tensor over a small region of space,
roughly the range of the intermolecular forces, in a planar
geometry. However, the validity of such a unique definition
remains unclear in systems with curved interfaces. Here, we are
interested in the local pressure of the nucleus far enough from
the interface that the ambiguity in the pressure definition is of
negligible order. In this work, we adopted the contour
definition of Irving and Kirkwood,14,58 which is a straight
line connecting two interacting molecules. All parameters in
the pressure tensor calculations are consistent with those in the
molecular dynamics simulations except for the Coulombic
interactions. Incorporating the Ewald summation into the
pressure tensor formulation is not trivial.59 Instead of
implementing the Ewald summation directly, we adopted the
shifted force version60,61 of the Wolf method62 to account for
the long-range contribution to the local pressure tensor. This

Figure 2. Time evolution of the number of ice-like molecules, NIdh
, for

the system in Figure 1. Brown lines show trajectories where the
nucleus transited too early to acquire data, whereas the other colors
show the trajectories that were finally employed for our analysis.
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allows us to calculate the pressure tensor in a pairwise manner
with accuracy comparable to that of the exact Ewald method.
Derivation of molecular pressure tensor equations in spherical
coordinates, calculation details, and source code are available
in the Supporting Information.
In this system, the tensor has two non-zero components:

normal (radial) pressure PN and tangential pressure PT
(averaged from the polar and azimuthal pressures). As
shown in Figure 3b, the pressure profile converges to the
average pressure when it reaches the liquid far from the
interface (within a 10 bar error). More importantly, it shows
that the true pressure in the nucleus (pIdh

) agrees with that of
bulk ice at the same chemical potential as the system (pIdh

μ); i.e.,
the true (mechanical) pressure inside the nucleus is ∼200 bar.
The tangential component is rather noisy, so we estimated it,
PT,calc, also from the fit to the normal component, PN,fit,
combined with the hydrostatic equilibrium condition as
explained in the Supporting Information. Interestingly, the
interface is stretched even at negative pressures. However, we
cannot quantify this effect with certainty due to the
nonuniqueness in the definition of the local pressure tensor.
In any case, the pressure profile is expected to cover
significantly different pressures from about 200 bar at the

core of the nucleus to negative pressure at the interface and
again to standard pressure at the surrounding liquid.
With internal pressure pIdh

measured from the pressure
profiles, we can then estimate f from eq 2 upon defining R. Just
like with γ, the arbitrariness in the location of the dividing
surface is expected to affect f. In the Supporting Information,
we show that the R values in eqs 1 and 2 are not necessarily
equal. The former, R = Rs, is the surface of tension defined by
Gibbs, whereas the latter, R = R*, is the true surface of tension.
How to evaluate R* is, however, nontrivial, and no empirical
rules have been suggested. Since the uncertainty in R* must be
comparable to the interfacial thickness, we pragmatically
estimate f for three different values, including Rs and the two
limits of the interfacial region.
Considering the lowest (2 nm) and highest (3.5 nm) bounds

for R*, we find that f should be between 20 and 35 mJ/m2. In
particular, when R* ≈ Rs, f ∼ γ ∼ 23 mJ/m2. Therefore, in the
critical nucleus at standard pressure and 23 K of supercooling, f
is comparable with γ for the TIP4P/Ice model. According to
Eriksson and Rusanov,40 the high mobility of molecules at the
ice−water interface would promote the equivalence, which is
also supported by the lower density in the internal phase
according to ref 39. Hence, the Gibbs assertion of their
equivalence is not completely invalidated; rather, the extent to
which they coincide seems to be dependent on the system.
Since the equivalence between f and γ seems to be

contingent on the system, we now move from the nucleus to
study a different case, the planar interface at coexistence for the
basal plane (with Miller-Bravais indices 0001, Figure 4 a),
whose interfacial free energy is well-known to be ∼27.2 mJ/
m2.41,63 In this case, the temperature is 270 K instead of 247 K,
and a single plane, instead of an average of planes, is exposed.
As one can see in Figure 4b, the density profile exhibits an
interface with a thickness similar to that of the nucleus (∼2
nm). The density profile is smoothed using a one-dimensional
Gaussian filter with standard deviation σ = 3 Å.64 Moreover, in
Figure 4c, we show the pressure profile across the basal plane
for the normal and tangential components. Normal and
tangential pressures, in this case, are perpendicular and parallel
to the planar interface, respectively. They are calculated using
the pressure tensor equations from ref 65 (see the Supporting
Information). The normal pressure is constant at ∼7 bar
within statistical uncertainties (standard deviation of ∼7.2
bar), confirming that the system has reached mechanical
equilibrium. Only the diagonal elements in the pressure tensor
are non-zero; all off-diagonal pressure components are
confirmed to fluctuate around zero. The original tangential
pressure data in the ice phase are noisy due to the large
fluctuation in density. To smooth the data, we apply the same
one-dimensional Gaussian filter as in the density case. We also
fit the raw data with a skewed Gaussian function (Supporting
Information). In this planar interface, we distinguish the
interfacial stress from the spherical nucleus one with the
symbol f |, defined as

66

f y P y P y1
2

d ( ) ( )
L

0
N T

y
= [ ]| (4)

where Ly is the length of the simulation box in the direction
perpendicular to the interface (y) and the division by 2
accounts for the two interfaces present in the system due to
periodic boundary conditions. We note that, while PT(y) is
dependent on the contour, the integral over the entire system

Figure 3. (a) Density and (b) pressure profiles as a function of
distance dCOM from the center of mass of the ice nucleus. In panel b,
the thermodynamic pressure (blue symbol) and position Rs of the
surface of tension (vertical dotted green line) are also shown.
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(and thus f |) in eq 4 is unique and free from the ambiguity of
the contour definitions.16,67 After applying eq 4 to our
trajectory, we obtain f | ∼ 50 mJ/m2, almost twice the value
of the interfacial free energy for the basal plane (γ|).

41,63 This
shows that the interfacial stress and interfacial free energy may
differ in the ice−water interface. The interfacial stress seems
notably more sensitive to thermodynamic changes than the
interfacial free energy as previously observed using the mW
model in ref 33. Last but not least, note that in the nucleus and

the basal plane the interfacial stress is positive, as the interface
is stretched to negative pressures.
In summary, we have investigated the pressure inside a

critical ice nucleus in supercooled water at 1 bar and 23 K of
supercooling simulated via the TIP4P/Ice model. The planar
interface for the basal plane is also studied to include a
reference. The true (mechanical) pressure inside the ice
nucleus is compared to the bulk ice reference (thermody-
namic) pressure. The interfacial stress and free energies are
examined in both systems. Our findings contrast notably with
those of previous studies on hard-sphere and Lennard-Jones
systems. While these simpler systems showed discrepancies
between mechanical and thermodynamic approaches, our
results show agreement for ice nucleation under the studied
conditions.
However, we argue that this agreement may be just

coincidental, as the interfacial stress was observed to be very
sensitive to changes in conditions, as evidenced by our
examination of the basal planar interface at a temperature of
270 K (i.e., the melting point of the model). There, the
interfacial stress becomes approximately twice the magnitude
of the interfacial free energy. Further work is needed to
thoroughly elucidate the relation between f and γ during
nucleation. What we have described here at 247 K and 1 bar
may differ from what occurs at other temperatures and
pressures. To rationalize the complex behavior of the
interfacial stress, several factors may play a role, including
interfacial mobility,40 density differences between the phases,39

bond energies,39 crystal strain, defects (e.g., vacancies),6,7,13,68

and anisotropy. Additional contributing factors may also be
relevant.
The marked sensitivity to temperature changes of f strongly

suggests that one should not rely upon mechanical routes for
calculating γ, as they may lead to significant inaccuracies even
under modest variations in conditions. Indeed, it is a
conceptual error, as the interfacial free energy is defined
from bulk reference states. In most cases, the liquid can be
assumed to be bulk, and we have to find the reference bulk
solid at the same chemical potential as the liquid. In confined
systems,18−26 finding the reference bulk liquid may also be
required.
We show that the pressure across an ice nucleus in

supercooled water at 247 K may vary from an increased
pressure of 200 bar in the core of the nucleus to a negative
pressure at the interface before reaching the external pressure
of 1 bar. Negative transversal pressures are also present in the
basal plane. Our work provides insights into the relationship
between mechanical and thermodynamic properties during ice
nucleation, while also highlighting the limitations of mechan-
ical approaches for interfacial free energy calculations. We
hope to motivate further work along the line of harmonizing
the thermodynamic and mechanical picture of solid−liquid
interfaces.

■ ASSOCIATED CONTENT
Data Availability Statement
The data to support these findings are available upon request.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c03700.

(1) Derivation of the pressure tensor in spherical
coordinates, (2) governing equations for the local

Figure 4. (a) Initial configuration of the system exposing the basal
plane to the liquid and the secondary prismatic face to the reader. (b)
Density and (c) pressure profiles across the ice−water interface
exposing the basal plane at equilibrium at 270 K and 1 bar, obtained
in the NpyT ensemble. The density and tangential pressure points
shown in the figure were those after smoothing using a one-
dimensional Gaussian filter with σ = 3 Å.64 The tangential pressure fit
(line) was generated by fitting the original data to a skewed Gaussian
function. Panels b and c share the same horizontal axis, corresponding
to the position along the direction normal to the interface (y-axis in
the simulation box and analysis code). Raw data for density and
pressure profiles are provided in the Supporting Information.
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pressure tensor at a planar interface, (3) a complete
description of the pressure tensor evaluation workflow
(long-range corrections, fitting, and filtering), (4) raw
planar interface data (density and pressure profiles), and
(5) a discussion of the connection between thermody-
namic and mechanical definitions of nucleus interfacial
stress, with explicit consideration of the arbitrariness in
defining the dividing surface and its location (PDF)
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