Downloaded via UNIV AT BUFFALO STATE UNIV NEW YORK on February 10, 2026 at 02:31:59 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

THE JOURNAL OF

PHYSICAL
CHEMISTRY

A JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JPCC

Machine Learning Interatomic Potentials for Modeling Framework
Flexibility and Water Uptake in NbOFFIVE-1-Ni Metal—Organic

Framework

Xijun Wang,# Xiaoliang Wang,# Xiaoyi Zhang, Zhao Li, Jiayang Liu, Faramarz Joodaki, Kaihang Shi,
Filip Formalik, Omar K. Farha, Daniela Kohen, and Randall Q. Snurr*

Cite This: https://doi.org/10.1021/acs.jpcc.6c00023

I: I Read Online

ACCESS |

[l Metrics & More ’

Article Recommendations |

Q Supporting Information

ABSTRACT: Metal—organic frameworks (MOFs), with their
distinctive porous structures and tunable chemical properties,
have shown immense promise in the separation and storage of
gases. Currently, the accurate simulation of their adsorptive
properties remains challenging, especially for systems where the
molecules fit very tightly into the pores. Traditional simulation
methods often approximate the frameworks as rigid and do not
account for the framework flexibility seen in materials such as
NbOFFIVE-1-Ni. First-principles molecular dynamics (FPMD)
simulations offer the desired accuracy in modeling this flexibility
but are limited by their extensive computational demands,
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rendering them impractical for long simulations. Conversely, classical force field-based simulations offer computational efficiency
but lack the necessary accuracy. To break this accuracy-efficiency trade-off, we have developed machine learning interatomic
potentials trained on energies and forces from FPMD to model the framework flexibility of NbOFFIVE-1-Ni in the presence of water
over nanosecond time scales. Furthermore, by integrating MLIP-driven molecular dynamics (MLIP-MD) with grand canonical
Monte Carlo (GCMC) simulations, we further incorporated framework flexibility into adsorption predictions, yielding water
adsorption isotherms that better align with experimental data compared to those of conventional GCMC simulations. These
advances offer new opportunities for the design and optimization of MOFs in gas storage and separation applications.

1. INTRODUCTION

Metal—organic frameworks (MOFs) are porous crystalline
materials resulting from the self-assembly of inorganic nodes
and organic linkers." Their exceptionally high surface area,
tunable chemistry, and structural versatility make them
promising candidates for diverse applications, including gas
storage,2 separation,3 catalysis,4 and sensing.” In many
applications, water adsorption has a significant impact on the
performance or on the stability of the MOF. For example, in
direct air capture of CO,, water can compete for adsorption
sites, alter the structural conformation of the MOF, and modify
host—guest interactions, ultimately impacting CO, uptake.”’
Similarly, in atmospheric water harvesting and humidity
control, MOFs with high water uptake capacity enable efficient
capture and release of water under varying environmental
conditions, providing potential solutions for water scarcity.””

Many MOFs exhibit guest-responsive flexibility, such as
breathing,lo swelling,“ and linker rotations,'> which can
significantly impact the adsorption capacity and selectivity.
Materials such as MIL-53,"> CALF-20,"* and CAU-10-H°
exhibit such dynamic behavior. NbOFFIVE-1-Ni is a flexible
MOF where framework dynamics play a crucial role in
adsorption behavior (Figure 1)."“' This material has
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demonstrated interesting water and CO, adsorption behavior,
which has been attributed to its strong host—guest interactions
and the ability of its linker to rotate in response to water
molecules.'”'® Understanding the flexibility of such materials
and their influence on adsorption, particularly in response to
water, is essential for future material design and optimization.

Computational modeling has become an essential tool in
MOF research, reducing costly experimental trial-and-error
efforts and accelerating the discovery of high-performance
materials."” ™' However, accurately modeling flexible MOFs,
especially their interplay with guest molecules, remains a
significant challenge. One of the primary challenges involves
efficiently and accurately obtaining system energies during
molecular simulations such as molecular dynamics (MD)
simulations. Classical force field-based MD, while computa-
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Figure 1. Unit cell of the NbOFFIVE-1-Ni framework without H,O uptake (left) and with 12 H,O molecules (right).

tionally efficient, lacks the accuracy required to capture strong
noncovalent and coordination interactions, especially the
strong interactions between transition metal sites and
surrounding atoms. Although some studies have successfully
applied custom-developed force fields to model adsorption in
flexible MOFs,”*~> these force fields often require extensive
parametrization and exhibit limited transferability across
different systems, restricting their broader applicability. In
contrast, first-principles molecular dynamics (FPMD) simu-
lations provide highly accurate simulations but are computa-
tionally prohibitive for larger time and length scale simulations
due to their intensive computational cost. A promising recent
advancement aimed at bridging this gap is the development of
machine-learning interatomic potentials (MLIPs),”® which
have been increasingly applied to MOF systems.””>° Trained
on density functional theory (DFT) or FPMD data, MLIPs can
effectively learn the potential energy surface and accurately
capture structure-energy-force relationships, thereby achieving
near-DFT accuracy with a significantly reduced computational
cost. This approach enables high-fidelity, large-scale simu-
lations that were previously infeasible due to computational
limitations.

Another major challenge lies in accurately sampling the
dynamic structural changes of MOFs during adsorption, which
is particularly critical for flexible MOFs. Traditional grand
canonical Monte Carlo (GCMC) simulations typically assume
a rigid framework and thus often fail to capture the structural
flexibility of MOFs, resulting in considerable discrepancies
between the simulated and experimental adsorption isotherms.
For instance, previous work by Daglar et al.'® employed
GCMC simulations to calculate the water adsorption isotherm
of NbOFFIVE-1-Ni using the DFT-optimized MOF structure.
However, this approach significantly underestimated water
uptake compared to experimental results, predicting a
maximum adsorption of only 4 mol/kg (8 H,O molecules
per unit cell) under 80% relative humidity (RH) at room
temperature, whereas the experimental value reached 6 mol/kg
(12 H,0 molecules per unit cell). To improve accuracy, that
study also employed DFT to sample a series of structures
corresponding to different water uptake levels, resulting in
adsorption isotherms that more closely matched previous

experimental data.'® However, this limited sampling approach
could not fully capture the extent of the dynamic framework
flexibility.

To more efficiently sample configurations that account for
framework flexibility, previous studies have explored hybrid
MD and GCMC approaches.”’ ™ For instance, Colina et al.
proposed a sorption-relaxation (SR) workflow to study gas
adsorption in flexible polymeric materials.”’ Their workflow
iteratively combines classical force field-based MD simulations,
which account for polymer chain rearrangement, swelling, and
plasticization, with GCMC simulations to predict the
adsorbate uptake for the MD-relaxed structures. This approach
highlights the advantages of hybrid MD and MC methods in
enhancing the sampling efficiency for flexible materials.

In this work, we trained an MLIP on FPMD-generated
structures to systematically investigate the framework flexibility
of NbOFFIVE-1-Ni in the presence of adsorbed water. This
approach enabled MD simulations with near-DFT accuracy for
systems exceeding 1000 atoms, extended simulation times to
the nanosecond scale, and achieved computational efficiency 4
orders of magnitude faster than FPMD. We also employed
MLIP-MD in the relaxation module of the SR workflow,
enabling systematic sampling of hydrated framework structures
when predicting adsorption isotherms. Compared to tradi-
tional GCMC with a rigid framework, this hybrid approach
samples the framework flexibility, yielding water adsorption
isotherms that align more closely with experimental data
measured as part of this work, especially at low relative
humidity. While the SR approach does not fully reproduce the
sharp adsorption steps observed experimentally, it nonetheless
offers a clear improvement over traditional rigid-framework
methods. The remaining discrepancies between simulation and
experiment in the NbOFFIVE-1-Ni system highlight oppor-
tunities for further development, and this work paves the way
for future advances in the modeling of complex sorption
phenomena.
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2. COMPUTATIONAL AND EXPERIMENTAL
METHODS

2.1. Model Creation and Structural Modeling

The structure of NbOFFIVE-1-Ni (as-made composition: [Ni-
(NbOF;)-(C,H,N,),-2H,0]),"° also known as KAUST-7, was
obtained from the Cambridge structural database (deposition no.
1505385). In the experimental structure, the fluorine (F) and oxygen
(O) anion sites in (NbOF;)>~ are partially occupied, with an O/F
ratio of 1:5, leading to multiple possible structural configurations. To
address this, we manually assigned the F and O atoms based on the
chemical composition of NbOFFIVE-1-Ni and constructed two
structural models by varying the arrangement of O and F atoms
within the (NbOF;)>™ units, as illustrated in Figure S1.

To assess the impact of structural variation on adsorption behavior,
we performed DFT optimizations followed by GCMC simulations
using the methods described in Sections 2.2 and 2.4 for both
configurations. The resulting water adsorption isotherms exhibited
negligible differences (Figure S2), indicating that either structure
could be used for subsequent simulations. For consistency, we
selected one configuration (Model A in Figure S1) as the
representative model for further computational studies (Figure 1).

2.2. DFT and FPMD Simulations

Structural optimizations and FPMD simulations were carried out
using spin-polarized DFT, as implemented in the Vienna Ab Initio
Simulation Package (VASP).** The projector augmented wave
(PAW) method® was employed in conjunction with the Perdew—
Burke—Ernzerhof (PBE) exchange-correlation functional.>® The
plane-wave energy cutoff was set to 500 eV, ensuring a balance
between computational efficiency and accuracy. The maximum force
convergence criterion for geometry optimization was set to 0.01 eV/
A, and the energy difference convergence criterion for the SCF cycles
was set to 107> eV. Brillouin zone sampling was performed by using
only the Gamma point. To account for dispersion interactions, a van
der Waals correction was included using the DET-D3(BJ) method.””

Unless otherwise specified in the text, the FPMD simulations in
VASP were conducted within the NVT ensemble, where the number
of atoms (N), volume (V), and temperature (T) were held constant.
A Nosé—Hoover thermostat®®*® was used to maintain the system
temperature at 300 K. The atomic trajectories were propagated using
Newton’s equations of motion with a time step of 1 fs, which has been
shown to be suitable for generating frames for MLIP training.**' To
more easily view the results, a time-integrated sliding window
approach was used to compute the moving average of the system’s
total energy. The averaged energy, E(f), was calculated using the
following equation:**

_ 1 t+ At
B() = A—t[ E(r)dr W

where E(7) is the instantaneous energy at time 7 and At is the window
size, which was set to 400 fs.

2.3. MLIP Training and MLIP-MD Simulations

The DeePMD-kit package*** was employed to train a MLIP that
learns the relationships between atomic positions, total energy, and
atomic forces from FPMD trajectory data. In this approach, the total
system energy is expressed as the sum of individual atomic
contributions, which are functions of the local atomic environment.
To accurately represent the local environment, DeePMD-kit utilizes
two neural networks: an embedding network and a fitting network.*”®
The embedding network constructs local descriptors by encoding
atomic interactions and incorporating both radial and angular
information. These descriptors serve as input to the fitting network,
which predicts atomic forces and total energies based on the learned
representations. This two-step process allows the model to capture
complex structure-energy-force relationships while maintaining
computational efficiency.

For our study, the embedding network consisted of three hidden
layers with 25, 50, and 100 neurons, mapping the local atomic

environment matrix (constructed from atomic coordinates) to the
corresponding descriptor matrix. The se_e2 a descriptor was
employed, where “e2” indicates that two-body interactions
(interatomic distances) were included, and “a” denotes the
incorporation of both angular and radial features.*> The neighbor
cutoff radius was set to 8.0 A to define the local atomic environment,
ensuring that all relevant neighboring atomic interactions were
included in the descriptor matrix. The fitting network, responsible for
mapping the descriptor matrix to total energy and atomic force
predictions, was designed with 3 hidden layers of 100 neurons each.
The training objective was to minimize a loss function L(p,,p;) that
balances energy and force components:**

pe 2 pf 2
L(p, p,) = =Ac¢” + — AF,
(B py) = A+ = Zi (AF) @

where Ae denotes the difference between the predicted and reference
total energy, and AF, denotes the difference between the predicted
and reference atomic forces for atom i. The parameters p, and py
control the relative weight of the energy and force errors, respectively.
To ensure an appropriate balance between energy and force accuracy,
we applied a dynamic weighting scheme in DeePMD-kit.** The
energy prefactor p. was initially set to 0.02 and gradually increased to
1, while the force prefactor p; decreased from 1000 to 1. This adaptive
approach ensures that the model initially prioritizes accurate force
predictions, facilitating better structural relaxation before gradually
shifting the focus toward improving the energy accuracy. This strategy
has been reported to be reliable for balancing accuracy and
computational efficiency during training and evaluation.* The
learning rate followed an exponential decay schedule, starting at
0.001 and decreasing to 3.51 X 107 over 1,000,000 training steps.
These values are recommended for DeePMD-kit training to ensure
stable convergence.***® An adaptive batch size was used, and
validation was performed every 1000 steps, with model checkpoints
saved every 10,000 steps. A random seed of 10 was applied to ensure
reproducibility. All the training data and obtained MLIPs can be
accessed on Zenodo."

The MLIP-driven MD (MLIP-MD) simulations were implemented
in LAMMPS.*® Periodic boundary conditions were applied in all three
directions. The MLIP was incorporated using the pair_style deepmd
command, ensuring that all atomic interactions were governed by the
MLIP. The system was thermalized using an NVT ensemble using a
Nosé—Hoover thermostat{gg’39 maintaining a constant temperature of
300 K with a relaxation time (also called temperature damping
parameter) of 0.04 ps. Initial atomic velocities were generated to
reproduce the Maxwell distribution at 300 K with a random seed. A
time step of 1 fs was used for numerical integration with the
Velocity—Verlet algorithm.*” Throughout the simulations, key system
properties, including potential energy, kinetic energy, total energy,
temperature, and pressure, were monitored and output at every step.
Atomic coordinates were recorded every 100 steps.

In Section 3.4, we describe MLIP-MD simulations in the NPT
ensemble that were conducted for comparison purposes, allowing the
framework volume to dynamically adjust under a constant pressure.
The isotropic pressure was set to the value corresponding to each
humidity level (see Section 2.4 and Table S2 for the specific pressure
and RH values sampled in this work), using a barostat damping
parameter of 1.0 ps.

2.4. GCMC Simulations

All GCMC simulations were performed using gRASPA,*® a GPU-
accelerated Monte Carlo simulation code. The Lennard—Jones (1J)
12—6 potential was used to describe nonbonded dispersion and
repulsion interactions. For both water—water and water-framework
Lennard—Jones interactions, a cutoff distance of 9.7 A was used; tail
corrections were applied to the water—water interactions. LJ
parameters for framework atoms were taken from the universal
force field (UFF),*® and the Lorentz—Berthelot mixing rules were
used to obtain L] parameters between different pseudoatoms.®’ Long-
range Coulombic interactions were calculated using the Ewald
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summation with a precision of 107%.** Periodic boundary conditions
were applied in all three dimensions by using a 2 X 2 X 2 supercell
with lattice parameters a = b = 19.64 and ¢ = 3149 A. To assign
partial charges to the framework atoms, we used the density derived
electrostatic and chemical (DDECO06) method.>>** )

Water was modeled using the rigid, 4-site TIP4P model,>® which
has been shown to provide a more accurate estimation of the
saturated vapor pressure compared to other commonly used water
models.”® In this model, a —1.04e charge on the center of mass (L-
H,0) site and +0.52¢ charges on the H—H, O sites were assigned. All
LJ parameters used for NbOFFIVE-1-Ni and guest H,O molecules
are given in Table S1. Each isotherm point was computed using
200,000 equilibration steps, followed by 500,000 production steps to
achieve statistical convergence. Translation, rotation, reinsertion, and
configurational bias swap (insertion/deletion) moves were applied in
the simulations.

The saturated vapor pressure (p,) for TIP4P water at 300 K was
determined from bulk-phase transition matrix Monte Carlo (TMMC)
simulations, as implemented in gRASPA. All force field parameters
(atomic charges, Lennard—Jones parameters, tail corrections, and
cutoffs) were identical with those used in the GCMC simulations. A
cubic simulation box of 20 X 20 X 20 A’ was used to satisfy the
minimum image convention. The macrostate space (i.e., the number
of molecules in the box, ranging from 0 to 300) was divided into
intervals of 20 molecules (0—20, 21—40, ..., 280—320). A macrostate
biasing scheme was applied to ensure sufficient sampling within each
interval. For every interval, we used 12,000,000 Monte Carlo steps for
equilibration, during which the biasing function was constructed,
followed by 120,000,000 steps for production to generate the
collection matrix. The biasing function was updated every 1,000,000
steps. The fugacity used in the TMMC simulations was chosen close
to the transition fugacity (4700 Pa). Using the standard reweighting
formula, the macrostate probability distribution (MPD) obtained
from TMMC can be analytically reweighted to any other fugacity.””**
The MPD can also be used to compute the grand thermodynamic
potential and, consequently, the corresponding pressure,” allowing
for explicit conversion between fugacity and pressure. This relation-
ship was used to convert pressures into fugacities for the
corresponding GCMC simulations, as tabulated in Table S2. The
saturated vapor pressure (p,) for TIP4P water was calculated as 5197
Pa at 300 K. To present isotherms on a relative scale (ie., as a
function of relative humidity, RH), we used the simulated p, for
simulated isotherms and the experimental p, (3600 Pa at 300 K) for
experimental isotherms, following the procedure recommended in our
previous study® to ensure meaningful comparison.

Note that MLIP is used only in the MD portion of the SR cycle.
While the MLIP provides near-DFT accuracy for describing
framework flexibility and properties such as metal-ligand polar-
ization, adsorption thermodynamics also depend sensitively on the
properties of the bulk fluid phase. First-principles descriptions of
water are known to exhibit significant deviations in vapor—liquid
coexistence behavior and saturation pressure from experiment, which
can lead to inaccurate adsorption equilibria. As shown by Siepmann
and co-workers,’’ DFT-based water models overestimate the heat of
vaporization and misrepresent coexistence densities. In contrast, well-
parametrized empirical models such as TIP4P reproduce these
thermodynamic properties with reasonable fidelity. For this reason,
we employed a hybrid strategy: the MOF dynamics are modeled using
the DFT-quality MLIP to capture realistic structural flexibility, while
the adsorbate—adsorbate and adsorbate—framework interactions in
GCMC are treated using classical water models to ensure
thermodynamically consistent adsorption equilibria. This combina-
tion leverages the strengths of each approach, providing a physically
balanced description of both the host flexibility and water phase
behavior. Knowing the vapor pressure of the water model is also
necessary for plotting the isotherms using the reduced pressure, p/p,,

2.5. Implementation of the Sorption-Relaxation Method

To enable adsorption modeling for flexible frameworks using the SR
method, we developed MOF adsorption with framework flexibility

(MOFAFF), a Python-based package designed to automate iterative
MLIP-MD/GCMC simulation iterations. The required input files for
MOFAFF include LAMMPS and gRASPA configuration files and an
“input” file specifying key simulation parameters such as pressure,
temperature, the number of sorption-relaxation (S—R) iterations, the
MLIP file path, and DDECO06 charge data, as well as environmental
variable settings to control simulation execution. Example input files
and detailed usage instructions are available in our GitHub repository
(provided at the end of the article).

In this study, we used the DFT-optimized NbOFFIVE-1-Ni-12H,0
structure (i.e., the fully hydrated structure with 12 water molecules
per unit cell) as the starting configuration for the SR simulations. The
SR workflow was performed at 300 K, with iteration between MLIP-
MD and GCMC simulations. In the relaxation module of each
iteration, an MLIP-MD simulation of 1 ps was conducted (refer to
Section 2.3) to allow the framework to relax in response to the
adsorbed water molecules. The final frame from the MLIP-MD
trajectory was extracted and used as the input structure for the
subsequent sorption module, where a GCMC simulation was
conducted to adjust the number of adsorbed water molecules at the
imposed fugacity. Throughout the SR iterations, each GCMC
simulation employed the same number of equilibration (200,000)
and production steps (500,000) to obtain the water uptake value for a
given frame at a given temperature and humidity (refer to Section
2.4).

The DDECO06 partial charges for each atom used in the GCMC
simulations were taken from the DFT-optimized NbOFFIVE-1-Ni-12
H,O structure. An initial comparison of atomic partial charges
between two randomly selected FPMD frames and the DFT-
optimized structure showed negligible deviations (Figure S3),
suggesting that the use of a single set of atomic charges was
appropriate for the entire SR process. As an additional test including
configurations with the most extreme energies, we analyzed six
additional frames from the FPMD trajectory: three with energies near
the average and three corresponding to the largest fluctuations. In the
worst case, the standard deviation for individual atomic charges was
0.025 ¢, confirming that the charges are essentially independent of the
instantaneous configuration of the framework (Figures S27 and S28).

At the end of each GCMC portion of the SR cycle, the final GCMC
configuration (MOF plus water molecules) was used as the new initial
configuration for the next MD portion of the cycle, allowing the
framework to dynamically respond to changes in the water occupancy.
In MOFAFF, to ensure compatibility between the relaxation and
sorption stages, we made minor adjustments to the bond lengths and
angles of water molecules extracted from the MLIP-MD frames to
match the TIP4P model parameters (Figure S4). These modifications
were minimal and preserved the relative spatial arrangement of the
water molecules and their hydrogen-bonding networks. This MLIP-
MD/GCMC loop was repeated for 100 iterations, corresponding to a
total of 100 MLIP-MD simulations (each 1 ps) and 100 GCMC
simulations (each with 200,000 equilibration and 500,000 production
steps). The adsorption capacity was determined by averaging the
water uptake over all of the iterations.

2.6. Experimental Methods

2.6.1. Synthesis of NbOFFIVE-1-Ni. Nickel nitrate hexahydrate
(175 mg, 0.6 mmol), niobium(V) oxide (79 mg, 0.3 mmol), pyrazine
(384 mg, 4.8 mmol), and cesium fluoride (1.1 g, 3.3 mmol) were
combined with § mL of deionized water in a Teflon bomb and
thoroughly mixed for 10 min. Subsequently, 300 L of concentrated
nitric acid (68%) was added to the mixture before heating at 130 °C
for 24 h. Upon cooling to room temperature, violet and white crystals
formed. These crystals were washed with water and methanol three
times to remove any remaining cesium fluoride (white crystals).
Activation of NbOFFIVE-1-Ni was performed by degassing the
methanol-washed sample under dynamic vacuum while heating at 105
°C for 24 h.

2.7. X-ray Diffraction Analyses

Powder X-ray diffraction (PXRD) patterns of the MOFs were
collected at room temperature by using a STOE-STADIP powder
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Figure 2. Schematic illustration of how the MLIP predicts the energy and forces for a given MOF configuration, effectively overcoming the
computational cost limitations of quantum chemistry methods and the accuracy limitations of classical force field-based calculations.

diffractometer equipped with an asymmetric curved Germanium
monochromator (utilizing CuKal radiation, 4 = 1.54056 A) and a
one-dimensional silicon strip detector (MYTHEN2 1K from
DECTRIS). The Cu X-ray source, with a line-focused beam, was
operated at 40 kV and 40 mA. The powdered sample was placed
between two Kapton sheets and analyzed in a transmission setup with
a rotating holder.

To investigate the structural changes of NbOFFIVE-1-Ni upon
water adsorption, the well-activated sample was placed in a sealed
container with liquid water at room temperature, ensuring a 100%
relative humidity environment. The sample was left under these
conditions overnight, allowing sufficient time for water vapor
adsorption and potential structural transformations. PXRD patterns
were collected before and after exposure to water vapor. To
quantitatively evaluate the changes in cell volume, the unit cell
parameters of both well-activated and moisture-treated NbOFFIVE-1-
Ni were refined using the cif file of as-synthesized NbOFFIVE-1-Ni'®
and the corresponding PXRD patterns before and after water
adsorption in Materials Studio. The calculated volume change is
approximately 0.7%.

2.8. Vapor Adsorption Isotherms

NbOFFIVE-1-Ni was activated at 105 °C under dynamic vacuum on
a Smart VacPrep system for 24 h. The temperature was initially
ramped to 80 °C at a rate of 5 °C/min and held for 30 min before
increasing to 105 °C. The well-activated samples were then used for
isotherm measurements. Water isotherms were collected by using a
Micromeritics 3Flex instrument at 300 K.

3. RESULTS AND DISCUSSION

3.1. DFT Optimization of NbOFFIVE-1-Ni and
NbOFFIVE-1-Ni-12H,0

We conducted DFT structural optimizations on the
NbOFFIVE-1-Ni framework to investigate its structural
properties both in its dry state and when fully hydrated with
12 water molecules per unit cell (NbOFFIVE-1-Ni-12H,0).
Given the potential for different spin states at the nickel (Ni)
centers, various magnetic orderings were systematically
examined within the unit cell, including ferromagnetic,
ferrimagnetic, and antiferromagnetic configurations, as de-
picted in Figure S5. The total energies corresponding to these
configurations are summarized in Table S3. The results
indicate that different magnetic orderings result in variations
in total energy, regardless of water adsorption. However, the
high-spin configuration, where all four Ni atoms align with spin

up, yielding a total magnetic moment of 8 uB, consistently
exhibits energies that are very close to those of the lowest-
energy spin states. The energy difference between high-spin
and the lowest energy configuration is only 0.16 eV for
NbOFFIVE-1-Ni (1.42 meV/atom) and 0.13 eV for
NbOFFIVE-1-Ni-12H,0 (0.88 meV/atom). Since these
energy differences are very small, we adopted the high-spin
state in subsequent simulations to reduce the computational
complexity.

The DFT-optimized lattice parameters for NbOFFIVE-1-Ni
are a = b = 9.82 A and ¢ = 15.74 A, which are in excellent
agreement with the experimental values of a = b = 9.93 A and ¢
= 15.66 A,'® with deviations of 1.1% in the a and b directions
and 0.5% in the ¢ direction. Upon full hydration to
NbOFFIVE-1-Ni-12H,0, the DFT lattice parameters increase
slightly to a = 9.85 A b=9.89A and c=1591 4, leading to a
unit cell volume expansion from 1518.65 A* to 1548.22 A3,
which corresponds to a minor increase of 1.9%. This slight
volumetric change is consistent with experimental powder X-
ray diffraction (PXRD) data (Figure S6), where the patterns
for the dry and hydrated states remain nearly identical, with
several peaks exhibiting slight shifts, particularly at 20 = 23°
and 26°, confirming that water adsorption induces minimal
changes in lattice parameters and volume. This finding is
consistent with previous work.'®

In addition to minor changes in lattice parameters upon
water adsorption, we also observed that the DFT-optimized
geometry of NbOFFIVE-1-Ni-12H,0 exhibits linker distor-
tions compared to that of the dry framework. To further
investigate this effect, we manually rotated the organic linkers
by 25° from their optimized orientations (Figure S7a) and
performed DFT relaxations. In the absence of water, the linkers
returned to their original positions, indicating that such
distortions are energetically unfavorable. Similarly, when 12
water molecules were introduced into the framework, the
initially distorted linkers also relaxed back to their original
orientations (Figure S7b). However, the arrangement of the
linkers is less ordered compared with the water-free counter-
part, exhibiting a certain degree of distortion. Further
quantitative analysis of these distortions is provided in Section
3.2.
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Figure 3. Parity plots, MAEs, and RMSEs of (a) energy and (b) forces for unseen testing data set of NbOFFIVE-1-Ni-12H,0. DP stands for
DeePMD-kit Potential. Training data: 20,000 FPMD frames at 300 and 600 K, along with 5000 FPMD frames starting from a manually twisted
linker (25°); testing data: ~25,000 FPMD frames at 300, 600, and 900 K. (c) Moving average of energy per unit cell over time for FPMD (blue) of
the NbOFFIVE-1-Ni unit cell and MLIP-MD (red) of the NbOFFIVE-1-Ni 2 X 2 X 2 supercell. (d) Moving average of energy per unit cell over
time for FPMD (blue) of the NbOFFIVE-1-Ni-12H,0 unit cell and MLIP-MD (red) of the NbOFFIVE-1-Ni-12H,0 2 X 2 X 2 supercell. The

energy reference states are the DFT-optimized unit cells.

3.2. Training the MLIPs

To overcome the respective limitations of quantum chemistry
and classical force fields, we adapted MLIPs to enable large-
scale MD simulations with near-DFT accuracy. As illustrated in
Figure 2, the MLIP was trained by extracting local environ-
ment information from atomic coordinates in the training data,
projecting it onto a descriptor matrix, and then using a fitting
neural network to predict the system’s total energy and atomic
forces (refer to Section 2.3 for more details). Here, we
developed MLIPs for both NbOFFIVE-1-Ni and NbOFFIVE-
1-Ni-12H,0. The training data was generated using FPMD
simulations conducted at 300 K, starting from the DFT-
optimized geometries of NbOFFIVE-1-Ni and NbOFFIVE-1-
Ni-12H,0. Each simulation was performed for 20,000 steps
with a 1 fs time step, capturing equilibrium structural
fluctuations at room temperature. To expand the diversity of
the training data set, additional FPMD simulations were
performed using manually distorted structures, where the
organic linkers were rotated by 25° from their optimized
orientations (Figure S7). These simulations were run for 5000
steps at 300 K, revealing that the distorted linkers rapidly
relaxed back to their original orientations within the first 300
steps. Although these distortions were short-lived, their
inclusion in the training set ensured that the MLIP learned
the system’s response to these transient structural perturba-
tions. To further enhance the robustness of the MLIP models,
inspired by previous studies,’ additional FPMD simulations
were carried out at 600 K for 20,000 steps. At this elevated
temperature, the increased thermal energy facilitated the
sampling of a broader range of structural configurations. The

combined data set from equilibrium, distorted, and high-
temperature simulations provided a diverse and comprehensive
training set for the MLIPs. The data sets were then split into
80% training and 20% validation subsets for MLIP training
(refer to Section 2.3 for training details).

The accuracy of the trained MLIPs was evaluated by
analyzing parity plots, mean absolute errors (MAEs), and root-
mean-square errors (RMSEs) for both energy and force
predictions using an independently generated data set. This
testing data set consisted of ~25,000 frames from the
equilibrated portion of FPMD simulations of NbOFFIVE-1-
Ni-12H,0 and NbOFFIVE-1-Ni at 300, 600, and 900 K using
VASP 6.4.1. Note that some of the simulations did not finish
due to run-time limits, so the frame number may be lower than
25,000 at a given temperature. As shown in Figure 3a,b for
NbOFFIVE-1-Ni-12H,0 and in Figure S9 for NbOFFIVE-1-
Ni, the MLIP-predicted energies and forces exhibit excellent
agreement with the DFT reference values. The RMSEs with
and without water were approximately 2 meV atom™ for
energies and below 0.1 eV A™" for atomic forces. Parity plots of
energies and forces for each individual test temperature are
provided in Figure S8 for NbOFFIVE-1-Ni-12H,0 and in
Figure S10 for NbOFFIVE-1-Ni. For NbOFFIVE-1-Ni at 900
K, a few outliers appear in the energy predictions (Figure
S10f); however, this does not affect the overall conclusions
since the SR simulations were carried out at room temperature,
and the MLIP is used here only to calculate forces in the MD
simulations. We also note a slight systematic underestimation
of energies at 300 K for NbOFFIVE-1-Ni-12H,0 (Figure S8a),
which likely arises from the weighting scheme used during

https://doi.org/10.1021/acs.jpcc.6c00023
J. Phys. Chem. C XXXX, XXX, XXX—=XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6c00023/suppl_file/jp6c00023_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6c00023/suppl_file/jp6c00023_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6c00023/suppl_file/jp6c00023_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6c00023/suppl_file/jp6c00023_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6c00023/suppl_file/jp6c00023_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6c00023/suppl_file/jp6c00023_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6c00023/suppl_file/jp6c00023_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.6c00023?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.6c00023?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.6c00023?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.6c00023?fig=fig3&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.6c00023?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

(@)

30000

20000

15000

Frequency

10000

5000

$(O-Ni-N-C)

0

(b)

25000

6(Nb-F-Ni) 20000

r—=q
d P

15000

Frequency

10000

5000

35000

30000

25000

Frequency
N
(=3
(=3
=3
o

15000

5000

25000
—— DFT NbOFFIVE-1-Ni-12H,0

140

== DFT NbOFFIVE-1-Ni

MLIP-MD NbOFFIVE-1-Ni

MLIP-MD NbOFFIVE-1-Ni-12H,0

50 100 150 200 250
¢(O-Ni-N-C) (°)
MLIP-MD NbOFFIVE-1-Ni
- DFT NDOFFIVE-1-Ni :
MLIP-MD NbOFFIVE-1-Ni-12H,0 I
DFT NbOFFIVE-1-Ni-12H;0 ll'
|
|
'\
I\
e "Iﬂ“ U" ll “ﬂL
145 150 155 160 165 170 175 180
B(Nb-F-Ni) (°)
MLIP-MD NbOFFIVE-1-Ni
- DFT NbOFFIVE-1-Ni I ;
MLIP-MD NbOFFIVE-1-Ni-12H,0 {
—— DFT NbOFFIVE-1-Ni-12H,0 ! |
|
. Il i
155 160 165 170 175 180
B(F-Ni-O) (°)
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training, where the force and energy weights were set to
1000:0.02 at the start of the training to emphasize accurate
force learning. Another possible reason is that the training set
was generated using VASP 5.4.4, while the test set was
generated using VASP 6.4.1, which may result in slight energy
differences. Further improvements could be achieved by
reducing large outliers through extended sampling and
retraining, which would tighten the force and energy error
distributions and improve the overall model robustness.
Despite this bias, the RMSE remains below 2 meV atom™,
well within the intrinsic accuracy of DFT. These results
confirm that the trained MLIP reliably reproduces the energy
and force landscapes of the framework structures.

To further assess the reliability of the MLIPs, MD
simulations were performed on a 2 X 2 X 2 supercell of
NbOFFIVE-1-Ni for 1 ns. The moving average of the energy
per unit cell obtained from the MLIP-MD simulations closely
matched the corresponding FPMD results for the initial 0.02
ns, with deviations of less than 0.1 eV (Figures 3c and S11a).
Additionally, single-point DFT energy calculations were
performed on randomly selected frames from the MLIP-MD
trajectory. The energy differences per unit cell between MLIP
predictions and DFT reference values remained below 0.005%
(Table S4), confirming that the MLIP accurately reproduces
the system’s energy landscape. A similar validation was
conducted for NbOFFIVE-1-Ni-12H,0 using the 2 X 2 X 2

supercell model. The moving average energy per unit cell
obtained from MLIP-MD deviated from FPMD by only 0.3 eV
(Figures 3d and S11b). Single-point DFT calculations on
randomly selected MLIP-MD frames showed deviations of less
than 0.03% (Table SS), further confirming that the MLIP
model accurately predicts the energetics of the hydrated
framework.

To assess the diversity of configurations sampled by MLIP-
MD, we compared the energy variances from AIMD and
MLIP-MD trajectories for one unit cell of NbOFFIVE-1-Ni
and NbOFFIVE-1-Ni-12H,0 over 0.02 ns (Figure S12). The
two methods exhibit comparable variance, indicating that
MLIP-MD captures a configurational space similar to that of
AIMD. For NbOFFIVE-1-Nj, the energy variance is 0.19 eVv?
for AIMD and 0.12 eV? for MLIP-MD, while for NbOFFIVE-
1-Ni-12H,0, the corresponding values are 0.23 eV* and 0.16
eV?, respectively. Note that the apparent variances in Figure
3¢,d are much smaller for MLIP-MD than for FPMD due to
the different system sizes (1 versus 8 unit cells) since
fluctuations scale with the square root of the number of atoms.

These validation results demonstrate that the trained MLIPs
effectively model the structural dynamics and energetics of
NbOFFIVE-1-Ni and NbOFFIVE-1-Ni-12H,0, enabling
efficient simulations on large systems, including 2 X 2 X 2
supercells containing 896 atoms for NbOFFIVE-1-Ni and
1184 atoms for NbOFFIVE-1-Ni-12H,0. The MLIP-MD
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simulations achieved a computational speedup of 4 orders of
magnitude compared to FPMD (refer to Table S6 for a
summary of CPU times), allowing for nanosecond-scale
simulations while maintaining DFT-level accuracy.

3.3. Impact of Adsorbed Water on Framework Flexibility

To investigate how water adsorption influences the structural
flexibility of NbOFFIVE-1-Ni, we analyzed the geometric
information obtained from MLIP-MD simulations of NbOF-
FIVE-1-Ni and NbOFFIVE-1-Ni-12H,0 2 X 2 supercells over
1 ns. Compared to the 0.02 ns FPMD simulations based on the
unit cell model, the larger system size and extended simulation
duration are expected to provide better sampling, thereby
revealing more reliable information about water-induced
framework flexibility.

We selected the ¢(O—Ni—N—C) dihedral angles, ¢(O—
Ni—N-C), as descriptors to quantify the rotational motion of
the organic linkers (Figure 4a, left). For each frame of the 2 X
2 X 2 supercell, there are 32 such dihedral angles,
corresponding to 4 linkers per unit cell. In the DFT-optimized
NbOFFIVE-1-Ni structure, dihedral angles of 150.7° and
209.3° (green dashed lines in Figure 4a, right) represent two
distinct orientations of the linkers (180° + 29.3°). After water
adsorption, these angles shift slightly to 148.3° and 211.6° in
the DFT-optimized NbOFFIVE-1-Ni-12H,O structure (red
solid lines). The distributions of ¢y(O—Ni—N—C) reveal that
in the absence of water (green histogram), the linkers undergo

rotational motion but remain centered around the DFT-
optimized angles. However, in the hydrated framework (red
histogram), the peaks of the ¢(O—Ni—N—C) distribution
exhibit approximately 10° shifts, with one peak decreasing
from 148.3° and the other increasing from 211.6°, suggesting
that water enhances the rotational flexibility of the linkers.

Additionally, we examined the bending behavior of the metal
node chains by analyzing two key bond angles: (Nb—F—Ni)
and O(F—Ni—O) (Figure 4b,c, left). In the DFT-optimized
NbOFFIVE-1-Ni structure, both angles are precisely 180°
(green dashed lines), indicating perfectly linear node chains.
Upon water adsorption, the DFT-optimized NbOFFIVE-1-Ni-
12H,0 structure exhibits only minor bending, with §(Nb—F—
Ni) decreasing to 177.9° and (F—Ni—0) to 179.6° (red solid
lines in Figure 4b,c, right). For both dry and hydrated
frameworks (green and red histograms), the distributions of
O(Nb—F—Ni) and G(F—Ni—O) angles are very similar, with
the O(Nb—F—Ni) distribution centered around 172° and
occasionally bending down to 150° and the O(F—Ni—O)
distribution centered around 174° with occasional bending
down to 160°. This indicates that water adsorption has a
negligible impact on the bending of the metal node chains at
300 K within the simulated time scale.

As a comparison, we also examined the distributions of
¢(0O-Ni—N-C), O(Nb—F—Ni), and O(F—Ni—O) obtained
from the shorter 0.02 ns FPMD simulations of the unit cell
model (Figure S13). Although the general trends for ¢(O—
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Figure 6. H,O adsorption isotherms of NbOFFIVE-1-Ni at 300 K in the range of (a) 0—100% RH and (b) low RH (0—7.5%), obtained from
background-corrected experimental data (black; see Figure S18 for more details), GCMC with rigid framework (yellow), and the SR approach with
the MLIP-MD simulations in the NVT (green) and NPT (purple) ensembles. Each SR-derived data point represents the average H,O uptake over
100 SR iterations. (c) Schematic illustration of the SR approach. (d) PSD of the NbOFFIVE-1-Ni framework at 80% RH computed from the DFT-
optimized structure (black) and averaged over the final frames from each MLIP-MD simulation in the NVT (green) and NPT (purple) ensembles
across 100 SR iterations. (e) H,O uptake versus SR iteration at 80% RH, comparing the MLIP-MD simulations in the NVT (green) and NPT
(purple) ensembles. (f) Percentage volume change over the SR iterations at 80% RH, with the MLIP-MD simulations in the NVT (green) and NPT

(purple) ensembles.

Ni—N-C) and O(F—Ni—O) are consistent with the MLIP-
MD results, the distribution curves are noisier, potentially due
to the limited system size and simulation time scale (Figures
S14—S16). This observation highlights the importance of
employing larger supercells and longer time scales to reduce
statistical noise.

Next, we examined the impact of water molecules on the
pore size distribution (PSD). We first analyzed the PSD of
NDbOFFIVE-1-Ni in its dry state by comparing the PSD of the
DFT-optimized structure to the averaged PSDs obtained from
FPMD and MLIP-MD simulations. For FPMD, the PSD was
averaged over all frames generated during the 0.02 ns
simulation. For MLIP-MD, the PSD was averaged over all
output frames collected from a 1 ns simulation, where frames

were recorded every 100 simulation steps. As shown in Figure
Sa, both FPMD and MLIP-MD sampling yielded similar PSD
profiles (with a single peak spanning 2.8—3.1 A), which
differed notably from that obtained using the DFT-optimized
structure (with a sharp peak at 2.4 A and a broader peak from
2.8 to 3.1 A). A similar contrast between the DFT-optimized
structure and the MD-derived PSD profiles is observed for
NbOFFIVE-1-Ni-12H,0 (Figure Sb), where the dominant
pore diameter from the DFT-optimized structure is 2.8 A,
which is significantly lower than the values obtained from
FPMD (3.1 A) and MLIP-MD (3.1-3.5 A). Comparing the
MLIP-MD results (red curves) in Figure Sa,b further reveals an
increase in the pore size upon water loading, suggesting that
the dynamic interactions between water molecules and the
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framework lead to pore expansion, highlighting the critical role
of host—guest interactions in governing the structural proper-
ties of the material.

We further investigated the behavior of water molecules
within the pores of NbOFFIVE-1-Nij, including the potential
for proton (H*) and hydronium ion (H;O*)® formation. By
examining structural frames from both FPMD and MLIP-MD
trajectories, we quantified the occurrence of water dissociation
events leading to proton formation (Figure Sc). FPMD
simulations indicated that no proton formation was observed
throughout the simulation. Conversely, MLIP-MD simulations,
which encompassed larger system sizes and extended time
scales, occasionally exhibited a minimal fraction (<2%) of
transiently dissociated protons. These protons rapidly
recombined with hydroxide ions (OH™) to reform water
molecules, resulting in no long-lived ionic species and, thus, no
impact on the results. Additionally, no H;O" ion was observed
in either the FPMD or MLIP-MD simulations (Figure S17). It
would be interesting to train the MLIP with dissociated water
states in future work, but this is beyond the scope of the
current paper since it is unlikely that water dissociation plays a
role in the adsorption process. We also examined the spatial
density distribution of water molecules within the NbOFFIVE-
1-Ni pores. The results indicate that due to the small pore size
(diameter <4 A), water molecules interact strongly with the
framework, resulting in a near-uniform distribution within the
confined spaces (Figure 5d).

3.4. Impact of Framework Flexibility on Water Adsorption

As shown in Figure S18, the experimentally measured water
adsorption isotherm at 300 K (black circles) exhibits a type I
profile at low relative humidity (RH < 7.5%), indicating
microporous behavior. A noticeable adsorption step is
observed around 7.5% RH, followed by an increase in uptake
up to approximately 5.4 mol/kg at 50% RH. Beyond this point,
a second adsorption step occurs, with the uptake continuing to
rise and eventually surpassing 7 mol/kg at higher RH values.

Compared with the previously reported isotherm'® (gray
circles in Figure S18), our results show excellent agreement.
Notably, both results exhibit adsorption steps at 7.5% and
~50% RH. However, we observed that background adsorption
from external surfaces and the sorption tube is significant in
this system. Therefore, to more accurately capture the intrinsic
water uptake behavior of NbOFFIVE-1-Ni, we focus our
subsequent discussion on the isotherm correction for back-
ground adsorption. Details of the background measurement
and correction procedure are provided in the Supporting
Information; see Figure S18.

To model water adsorption, we first attempted conventional
rigid-framework GCMC simulations using the DFT-optimized
NbOFFIVE-1-Ni structure. The resulting water adsorption
isotherm (Figure 6a,b, yellow line) is significantly lower than
our experimental values, consistent with previously reported
simulation results.'® Inspired by this prior work,® we also
explored water uptake using the DFT-optimized framework
structure from NbOFFIVE-1-Ni-12H,O to account for the
structural changes induced by water loading. As shown in
Figure S19, H,O loading can modify the framework structure,
leading to increased water uptake; however, the uptake values
remain lower than the experimental data. Additionally, as
described in the caption of Figure S19, we sampled two
different H,O arrangements using short MC simulations in the
NVT ensemble, which produced distinct framework deforma-

tions and resulted in varying water uptake values. These
findings highlight the importance of developing a sampling
approach that can adequately capture diverse configurations of
the MOF when evaluating water uptake.

Recognizing the importance of water distribution in
governing framework flexibility and its impact on water uptake
behavior, we also applied the SR approach, which iteratively
integrates the relaxation and sorption modules, as illustrated in
Figure 6¢c. The relaxation module employs MLIP-MD
simulations to account for framework flexibility. To ensure
the MLIP model’s reliability across different hydration states,
we trained a third version of the MLIP with the training data
set expanded beyond the original FPMD data for NbOFFIVE-
1-Ni and NbOFFIVE-1-Ni-12H,0. Additional data corre-
sponding to 30,000 steps of FPMD simulations at both 300
and 600 K for unit cells with 0, 4, 8, and 12 H,O molecules
(denoted as NbOFFIVE-1-Ni-nH,O, where n = 0, 4, 8, and
12) were incorporated. This expansion of the training data
ensures that the final MLIP model accurately captures the
adsorption behavior across a range of hydration levels. The
MLIP’s performance over the independent test set described in
Section 3.2 is shown in Figures S20—S22, where the RMSEs
for the total energy per unit cell remain below 107> eV, and
those for atomic forces are less than 0.1 eV/A. As in Section
3.2, we see an underestimation in the energies. However, since
the forces are more important than energies in MD, we
consider the model as well trained. After each MD portion of
the SR cycle, the sorption module employs GCMC simulations
to determine the water adsorption capacity, using as input the
framework structure and configuration of water molecules from
the final frame of the relaxation module. In the SR workflow,
the relaxation and sorption modules are executed iteratively to
provide a more realistic representation of dynamic water
adsorption, incorporating both framework relaxation and
variations in water loading (see Section 2.5 for more details).

While hybrid MD/MC approaches have been employed
previously to account for framework flexibility in adsorption
simulations with classical force fields,"**® the present MLIP-
driven workflow differs fundamentally in both fidelity and
scope. By incorporation of a DFT-quality machine learning
interatomic potential, the MLIP-MD module in our SR
workflow captures near-first-principles energetics for thousands
of atoms, enabling direct sampling of linker rotations and
subtle framework distortions that empirical force fields cannot
reproduce. This integration bridges the gap between quantum
accuracy and statistical sampling, allowing us to probe how
collective yet small (~5—10°) linker rotations modulate water
binding and pore accessibility in NbOFFIVE-1-Ni.

Using the SR approach, we calculated the average water
uptake over 100 SR iterations at each RH in the NVT
ensemble for the MLIP-MD simulations (green line in Figure
6a). We additionally examined the NPT ensemble for the
MLIP-MD simulations (purple line), where the pressure was
held constant at each humidity level, allowing the framework
volume to dynamically adjust. The two adsorption isotherms
were nearly identical, with the NPT results showing slightly
lower water uptake than NVT at high humidity levels. Notably,
the water uptake values from the SR approaches (both NVT
and NPT) more closely match the experimental isotherm,
especially at low loadings, compared with the rigid-framework
GCMC simulations based on the DFT-optimized structure
(yellow line) across all studied humidity levels. This improve-
ment can be attributed to framework relaxation and the
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resulting pore expansion, as evidenced by the larger average
pore sizes in the SR-sampled framework structures compared
to the DFT-optimized structure, as shown in Figures S23 and
6d for low (10%) and high (80%) humidity levels, respectively.
Despite the nearly perfect agreement with experimental data at
low (<7.5%) RH (Figure 6b) and the improved water uptake
estimations at higher RH compared to GCMC simulations
using a rigid framework, the SR results still fall below the
experimental data above 7.5% RH. In particular, the SR
isotherm fails to reproduce the two sharp uptake steps
observed experimentally at 7.5% and 50% RH.

To better understand these discrepancies between simu-
lation and experiment, we first examined whether the
discrepancy might arise from too few SR iterations. Using
80% RH as a representative example, we plotted water uptake
versus the number of SR iterations over 100 iterations. As
shown in Figure 6e, both the NVT and NPT results fluctuated
between 3.9 and 4.6 mol/kg, with no upward or downward
trend, suggesting that the simulations have converged. The
average loading for the NVT SR runs was 4.26 mol/kg, and
that for the NPT SR runs was 4.16 mol/kg. To estimate error
bars, we divided the data into S blocks, calculated the average
within each block, and defined the error bar as

[
2 X \/% D (% in)z ,% where N = 5 is the number of
blocks and x; is the average value in the block i. The computed
error bars for NVT and NPT were 0.01 and 0.06 mol/kg,
respectively, indicating that the results from the two simulation
methods are almost the same within statistical error. Moreover,
increasing the number of SR iterations up to 4000 (Figure
S24) did not change the simulation results.

We also explored the effect of other simulation choices. In
the GCMC portion of the SR simulations, water molecules
undergo translation, rotation, reinsertion, and swap (insertion/
deletion) moves with equal attempt probability (25%) assigned
to each move type. The acceptance rates for each move at low
(10%) and high (80%) humidity levels are shown in Figure
S26 and Table S7. Translation and rotation moves have an
acceptance rate near 50% as expected, but the other move
types have acceptance rates below 1%. To test whether
adjusting the relative probabilities of attempting different
moves can influence the GCMC results, we drastically reduced
the attempt probabilities for translation and rotation moves,
setting translation and rotation at 4.55% and reinsertion and
swap at 45.45%. We then repeated the GCMC simulations for
SR iteration #1 at both 10% and 80% RH. As shown in Tables
S8 and S9, neither the acceptance rates nor the final average
water uptake values showed any notable change.

A potential cause of the steps in the experimental adsorption
isotherms is some sort of phase change, gate opening, defect
formation, or other structural change in the MOF, or a sudden
change in the structure of the adsorbed water molecules within
the pores. Interestingly, the experimental PXRD patterns
(Figure S6) do not show any major changes between the dry
and fully hydrated states and only a minor (<2%) volume
change. Also, the NPT simulations at 80% RH predict a
volume change of less than 1.5% (Figure 6f). We tested
whether adjusting the rate of volume change in the NPT
MLIP-MD simulations, controlled by the barostat damping
parameter, as illustrated in Figure S25, would affect the water
uptake. At 80% RH, the average water uptake from the SR
simulations remained virtually unchanged.

Uncovering the cause of the steps in the experimental
isotherms will likely require additional experimental character-
ization. One could ask why the simulations did not predict any
structural change in the MOF beyond local linker rotation.
Consider, for example, the hypothesis that the steps are caused
by water-induced defects such as a disruption in the node-
linker connectivity. Such defects have been reported in other
MOFs under humid conditions and may enhance local
hydrophilicity,”’ ™ thereby promoting abrupt water uptake.
To predict such a structural change, MLIP would need to be
trained on configurations exhibiting these defects. One could
hypothesize some structures and include them in the FPMD
training set or one could perform FPMD simulations at even
higher temperatures, hoping that the defects might form
spontaneously. It should be noted that the FPMD simulations
were relatively short (20 ps). Also, they were performed at a
constant volume. Adding FPMD simulations to the NPT
ensemble or using deliberately larger or smaller unit cell
volumes might allow structural transitions to be discovered
without hypothesizing a particular type of structural transition.
Enhanced sampling techniques such as metadynamics could be
useful in such studies, and techniques such as umbrella
sampling could be used to explore proposed structural
transitions in FPMD simulations. These methods could
facilitate the exploration of otherwise inaccessible regions of
the potential energy landscape. By enriching the training data
set with sufficiently sampled configurations, the resulting MLIP
would be better equipped to capture rare events such as
conformational rearrangements, phase transitions, or defect
formation. Robust sampling during the SR simulations is also a
challenge. Such advancements should lead to more robust and
realistic predictions of water uptake driven by framework
flexibility and help narrow the gap between simulation and
experiment in the coming years. We also note the recent
development of universal machine learning interatomic
potentials (uMLIPs), which can be fine-tuned for MOFs.
The present workflow could serve as a complementary
approach to uMLIP-based MD simulations, enabling more
accurate modeling of adsorption phenomena. In the long term,
advances in uMLIP frameworks may further bridge the gap
between simulation and experiment in predicting water uptake,
driven by framework flexibility.

4. CONCLUSION

In this study, we developed a MLIP-driven approach to
investigate the impact of framework flexibility on water
adsorption in the MOF NbOFFIVE-1-Ni. By training MLIPs
on FPMD data, we achieved nanosecond-scale simulations of
large supercells with near-DFT accuracy and computational
efficiency 4 orders of magnitude faster than FPMD. These
simulations revealed that water adsorption significantly
enhances the rotational flexibility of the organic linkers while
leaving the rigidity of the metal node chains largely unaftected.
This distinction highlights the critical role of linker dynamics
in accommodating guest molecules within a flexible framework.

To accurately model adsorption in flexible MOFs, we
developed a sorption-relaxation workflow that iteratively
integrates MLIP-MD with GCMC simulations. This approach
dynamically accounts for framework flexibility, leading to a
more realistic description of water uptake compared with
conventional rigid-framework GCMC simulations. The result-
ing water adsorption isotherms exhibit improved agreement
with the experimental data measured in our lab. While the SR
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approach marks a clear step forward, it does not reproduce the
two-step adsorption behavior observed experimentally at
~7.5% and ~50% relative humidity. This discrepancy suggests
that certain structural phenomena, such as defect formation,
gate-opening, or other conformational rearrangements, may
contribute to the observed stepwise uptake but are not fully
sampled in the current SR approach. Addressing this issue
remains a challenge for future work to enable robust and
general predictive modeling of adsorption in flexible porous
materials for applications in water adsorption, molecular
separation, and gas storage.
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