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ABSTRACT: We present enhancements in Monte Carlo simulation speed and functionality
within an open-source code, gRASPA, which uses graphical processing units (GPUs) to achieve
significant performance improvements compared to serial, CPU implementations of Monte
Carlo. The code supports a wide range of Monte Carlo simulations, including canonical
ensemble (NVT), grand canonical, NVT Gibbs, Widom test particle insertions, and continuous-
fractional component Monte Carlo. Implementation of grand canonical transition matrix Monte
Carlo (GC-TMMC) and a novel feature to allow different moves for the different components
of metal−organic framework (MOF) structures exemplify the capabilities of gRASPA for precise
free energy calculations and enhanced adsorption studies, respectively. The introduction of a
High-Throughput Computing (HTC) mode permits many Monte Carlo simulations on a single
GPU device for accelerated materials discovery. The code can incorporate machine learning
(ML) potentials, and this is illustrated with grand canonical Monte Carlo simulations of CO2
adsorption in Mg-MOF-74 that show much better agreement with experiment than simulations
using a traditional force field. The open-source nature of gRASPA promotes reproducibility and openness in science, and users may
add features to the code and optimize it for their own purposes. The code is written in CUDA/C++ and SYCL/C++ to support
different GPU vendors. The gRASPA code is publicly available at https://github.com/snurr-group/gRASPA.

■ INTRODUCTION
Graphical processing units (GPUs) have been extensively used
in physics-based simulations. For those simulations that focus
on molecular systems with classical mechanics, parallelization
is usually done when evaluating pairwise interactions.
Molecular-level simulations include molecular dynamics
(MD) simulations, which integrate Newton’s equations of
motion through time, and Monte Carlo (MC) simulations,
which use a Markov chain for the evolution of the system.
Between MD and MC, parallelization in MD simulations is
more common. Many biological systems are simulated using
MD, ranging from protein folding1 to the study of Alzheimer’s
disease.2,3 These studies often use large system sizes with
thousands to millions of particles, where the benefits of
parallelization are most apparent.4 However, in MC, especially
for studying adsorption in crystalline materials having periodic
unit cells, researchers usually consider smaller system sizes,
often with only a few thousand particles, which benefit less
from parallelization and GPUs.
Algorithmic differences between MC and MD also

contribute to parallelization being more common in MD
simulations than in MC. Although both classical MC and MD
simulations evaluate pairwise energies, MD moves every
particle in the system at each time step. Conventional MC,
on the other hand, typically uses single-molecule moves, which
means that only the energy change of a single molecule is

needed at each MC step. For a system with N = 1000 atoms, N
× (N−1)/2 = 499,500 pairs of energy evaluations are needed
at each MD step, while only N−1 = 999 pairwise interactions
are considered for each MC step. This makes it more
challenging to efficiently parallelize an MC simulation.
Efficiently parallelized MD codes such as NAMD,5 AMBER6

and GROMACS7 are widely used in the biology community,
and LAMMPS8 is popular for MD simulations of various
material systems.
Another factor leading to the larger number of parallelized

codes for MD than for MC is that MC algorithms (and codes)
tend to be more application-specific. MD simulations integrate
the classical equations of motion, regardless of the type of
system. MC simulations, on the other hand, use a much wider
range of ensembles and move types, and MC moves can be
invented specifically for the system of interest. For example, for
computational studies for adsorption, open ensembles like
grand canonical Monte Carlo (GCMC) and Gibbs Monte
Carlo are widely used. GCMC uses insertion and deletion
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moves to mimic the molecular transfers between phases in a
chemical equilibrium. For adsorption systems, GCMC relies
on an implicit bulk phase reservoir and only simulates the
adsorbed phase, whereas Gibbs Monte Carlo explicitly
simulates both the bulk and the adsorbed phases and utilizes
Gibbs particle transfer moves to allow the phases to reach
equilibrium. Similar to most other MC moves, GCMC
insertion and deletion moves and Gibbs particle transfer
moves are single-molecule moves. In addition to different
ensembles, special Monte Carlo moves, especially biased MC
moves,9 can be applied to enhance the MC sampling. For
example, configurational-bias Monte Carlo10 (CBMC) was
invented for efficiently sampling chain molecules in a variety of
MC moves, while energy-bias insertion moves11 were invented
for boosting the efficiency of simulations of adsorption in
narrow pores. These moves speed up simulations for specific
applications such as conformational sampling or gas adsorption
but also hinder the generalization of MC codes.
Despite these difficulties, MC codes that benefit from

parallelization and GPUs have appeared in recent years. For
example, HOOMD-blue is a Python package that enables GPU
acceleration for MD and MC simulations.12 HOOMD-blue
uses GPU parallelization for rigid body molecular dynamics
and hard-particle MC simulations, which are well suited for
studying the self-assembly of colloidal systems.13 Another
example is the GPU-Optimized Monte Carlo code
(GOMC),14 which parallelized the energy evaluations.
GOMC features multiparticle moves such as the force-bias
multiparticle method.15 By using these multiparticle MC
moves, more pairs are evaluated for each move, making the
parallelization more beneficial. Kim et al.16−18 developed an in-
house MC code to run multiple GCMC calculations on the
GPU. Recently, they used their code to screen metal−organic
frameworks for methane adsorption.19 Their code uses
tabulated energy data for accelerating GCMC simulations on
the GPU, shifting the simulations from computation-intensive
to memory-intensive. Although these advances in using
parallelization for MC simulations have greatly accelerated
computational discoveries in specific research fields, these
GPU-enabled parallelization strategies, such as hard-particle
MC or force-bias moves, are seldom applied in adsorption or
phase equilibrium studies. The code by Kim et al.16−18 is not
open-source and appears to be custom-designed for certain
applications, such as methane storage19 and CO2 adsorption.

20

Besides the codes mentioned above, there are other Monte
Carlo codes that exploit CPU parallelization or other efficiency
optimization strategies and aim at generalization of function-
alities, such as Cassandra21 and Towhee.22

In this work, we develop a GPU MC code, gRASPA
(pronounced “gee raspa”), which is particularly focused on
simulations of the adsorption of guest molecules in zeolites and
metal−organic frameworks (MOFs). It can also be used for
simulating vapor−liquid equilibria and other phase equilibrium
problems. The gRASPA code is written in CUDA/C++ with
the C++ 20 standard, and it includes the basic features of
RASPA-2,23 a widely used serial CPU code designed for
simulating molecular adsorption and diffusion in flexible
nanoporous materials. The gRASPA code can perform various
Monte Carlo moves, such as translation and rotation moves9

and swap (insertion/deletion) moves9 using configurational-
bias Monte Carlo (CBMC),10 as well as continuous-fractional
component MC24 (CFC MC) and CFC with CBMC25

(CBCFC). The gRASPA code reduces the overhead of GPU

calculations by minimizing data transfers between the CPU
and the GPU and reusing the GPU pointers and allocated
memories. We demonstrate the efficiency of the gRASPA code
through benchmarking with RASPA-2 and RASPA-3,26 a
recent MC simulation program developed for better output
formatting, code readability, and simulation performance
compared to RASPA-2.
In gRASPA, we also incorporated new features that take

advantage of the GPU architecture and are not available in
RASPA-2,23 such as an option to use machine learning (ML)
potentials. We developed a MC move that combines the ML
potential with CBMC and tested its applicability for argon and
CO2 adsorption in Mg-MOF-74.

27 In addition, new features
such as semiflexible framework moves, which allow for
movements of certain portions of the framework or extra-
framework ions, and transition-matrix Monte Carlo28,29

(TMMC) are also included. In addition to offloading
calculations to Nvidia devices via CUDA, we also translated
gRASPA to SYCL/C++ for users wanting to perform
calculations on non-Nvidia GPUs or even field programmable
gate arrays. The gRASPA code is lightweight and can be easily
deployed to run dozens of Monte Carlo simulations on one
graphic card at the same time, dramatically increasing the
throughput while still maintaining a fast speed. Finally, we
pushed the desired throughput further and developed a high-
throughput computing mode of gRASPA that can run
hundreds to thousands of simulations on one graphic card.
This mode can significantly benefit researchers interested in
screening materials for applications such as carbon capture and
water harvesting. The gRASPA code is open source and
publicly available at https://github.com/snurr-group/gRASPA.

■ METHODS
General Design. As Nejahi et al. pointed out in their

papers about GOMC,14,30 simulations performed on the GPU
suffer greatly from memory transfers between the CPU and the
GPU. Although the GPU can perform massively parallelized
calculations quickly, the atomic data, including atom positions,
charges, and atom types, are normally prepared and stored on
the CPU and transferred to the GPU whenever they are
involved in a calculation.
Our gRASPA implementation focuses on reducing the

memory transfers and their latencies between the CPU (host)
and the GPU (device). This is done by storing most simulation
data on the GPU instead of the CPU. Because of this, graphic
cards that have higher memory bandwidth usually have better
performance when performing calculations. At the beginning of
the simulation, atomic data are read from the input and
transferred to the GPU. A list of 10 million random numbers is
pregenerated using the C++ standard random library on the
CPU and then transferred and stored on the GPU for use
during the entire simulation. This random number list can be
extended when needed. The trial positions for the MC moves
are generated on the GPU, and a trial translation, for example,
consumes three random numbers for the displacements in the
x, y, and z directions. Thus, we combine three random
numbers into a double3 variable that is built-in in CUDA. This
allows for much easier and more efficient use of the random
numbers on the GPU. All system parameters, such as the
number of molecules for each species, inverse temperature, and
the transition matrices for transition matrix Monte Carlo
simulations, are stored on the CPU.
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In MC simulations, temporary storage of data is needed.
Monte Carlo simulations require spaces to hold both the trial
(new) and current (old) positions since the fate of the trial
configuration will be determined based on the acceptance
criterion of the move. If the move is rejected, the trial
configuration must be discarded, and the current configuration
must be retained. One can see that declaring new pointers,
allocating new spaces on the memory, and freeing them for
each move would be very inefficient.14 Thus, we reuse these
pointers and allocations so that the new allocation of memory
is minimized and, if possible, eliminated during the
simulations.
The MC moves are classified into three categories based on

the parallelization of the energy evaluations. The moves that
only involve one trial configuration are considered single
particle moves and generalized into one function. These
include translation, rotation, non-CBMC swap moves (includ-
ing both insertion and deletion moves), and semiflexible
framework moves such as linker rotations. The second types
are the CBMC-based moves. These include the swap moves,

reinsertion moves, identity swap moves, and particle transfer
moves in the Gibbs ensemble. These moves share the same
CBMC backbone. Currently, the code only supports rigid
adsorbate molecules, but MC moves for flexible molecules will
be available in the near future. Finally, system-wide moves such
as (constant total-volume) volume perturbations of the
simulation boxes in the NVT-Gibbs ensemble or volume
moves in the constant-pressure, constant-temperature ensem-
ble are classified as the third type of move since these moves
change the configuration of every atom in a system and thus
involve the calculation of total energies. Having these three
generalized categories of moves allows us to experiment with
different ways of parallelization more easily.

General Energy Evaluation. Both pairwise and non-
pairwise energy interactions are considered in gRASPA.
Parallelized energy calculations are performed using blocks
and threads. In parallel computing and programming with
NVIDIA GPUs, a “CUDA block” refers to a group of threads
that can cooperate and synchronize within the same block
while executing a parallel task. Threads within a block can

Scheme 1. Non-CBMC Insertion Move on Serial CPU versus GPU
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communicate with each other but cannot talk to threads from
another block. Pinned memory, also known as page-locked
memory, is a type of memory that cannot be swapped to disk
and remains in physical RAM. Because of this feature, GPU’s
direct memory access engine can access the data on pinned
memory directly without waiting for the operating system to
load into physical memory, thus reducing memory transfer
overhead. However, the downside of pinned memory is that it
reduces the amount of memory available on the CPU for other
processes. To minimize memory transfer and its latency while
not abusing this feature, we allocate pinned memories for the
data that needs to go back and forth between the CPU and
GPU. This includes an array of floating point values for energy
evaluations and an array of Boolean variables for indicating
overlaps between pairwise interactions. If the simulation needs
information on atom positions or partial charges on the CPU,
for example for machine learning potentials, the memory
related to these variables will also be allocated as pinned
memory.
During the energy evaluations, the various contributions to

the energies are tracked separately to provide additional
information to the user. Energies are reported as the sum of
van der Waals (vdW), short-range Coulombic and long-range
Coulombic interactions, each divided among intraframework,
framework-adsorbate, and adsorbate−adsorbate interactions.

Pairwise Interactions. In gRASPA, each thread handles
one or more than one distance pair between two atoms for the
energy calculation during a move, similar to the method
documented by Mick et al.31 For each block, which is the
bundle of threads, we perform parallel reduction (or
summation) within the block on the energies each thread
gives using the GPU’s cache memory (or shared memory).
This not only increases the utility of the graphic card but also
minimizes the amount of data transfer between the device and
the host. During the evaluation, threads that have super high
repulsive pairwise interaction energies or have a very short
pairwise distance are marked as “overlapped.” The user can set
the threshold energy and threshold distance. The overlap
Boolean variable will then be written into the preallocated
array on the GPU and then copied to the CPU via the pinned
memory. If there is an overlap, and the move is translation,
rotation, or moves that do not use CBMC, then the whole
move is stopped. If the move involves CBMC, then the energy
evaluation step of the overlapped trial is skipped, and CBMC
cannot select that trial. If there is no overlap for the single trial
move or for the CBMC trial, then the block sums are copied to

the CPU via the pinned memory, and the pairwise energy for
the move is the sum of the block sums.
To illustrate this implementation, Scheme 1 shows

pseudocodes for a non-CBMC insertion move running serially
on the CPU vs running on the GPU through gRASPA. We can
see that instead of straight-forwardly looping over the atoms in
the new molecule and atoms in the surroundings, for the GPU
parallelization, one must unroll the for loops by first grouping
pairwise interactions into threads, then grouping threads into
CUDA blocks. Then, for each thread in each CUDA block, it
loops over a number of pairwise interactions, and for each
pairwise interaction, the thread solves for the index of the atom
in the new molecule and of the surrounding atoms and
calculates the distance and energy. If an overlap is found,
instead of exiting the move completely, since threads are
executed in parallel, an overlap flag is used for the CUDA
block. Once every thread in a CUDA block finishes the
calculation, the overlap flag is synchronized. For every energy
summed over on each thread, shared memory is used to
perform parallel reduction to generate a CUDA block sum.
Once every CUDA block has finished calculation, the overlap
flag first gets transferred to the CPU from the GPU. If the flag
reports an overlap, then the move is discarded. If not, the
CUDA block energies are transferred to the CPU and then
summed up to generate the total energy for this move.

Coulombic Interactions. For long-range Coulombic
interactions, the real-space part and the Fourier part of the
energies are calculated using the Ewald method.9 For the
single-particle and CBMC moves, each thread handles the
energy difference computation and the change in the structure
factors of each k-point for the Fourier part of the Ewald
summation. The new structure factors are then stored in buffer
storage and are updated if the move is accepted. If the move is
accepted, the structure factors are adopted by swapping GPU
pointers between the old storage and the buffer storage for the
structure factors.
For MC moves that involve single particle movements,

including translation, rotation, insertion/deletion, reinsertion,
and Gibbs particle transfer, since only a single molecule has
been moved, the difference in Fourier energies and structure
factors is calculated. In this case, each thread handles the
calculation of structure factors for one k-point to increase the
amount of work each thread has and to reduce the usage of the
GPU.
For the initial and final stages of the simulation, where lack

of energy drift needs to be verified on the GPU, and for MC
moves such as NVT-Gibbs, which need the energy of the

Table 1. Energies (in Kelvin) for the Four Configurations of SPC/E Watera

configuration configuration 1 configuration 2 configuration 3 configuration 4

code NIST gRASPA NIST gRASPA NIST gRASPA NIST gRASPA

EvdW/kB (K) 111992 111992 43286 43286 14403.3 14403.3 25025.1 25025.1
ETail/kB (K) −4109.19 −4109.19 −2105.61 −2105.61 −1027.3 −1027.3 −163.091 −163.091
EReal/kB (K) −727219 −727219 −476902 −476902 −297129 −297129 −171462 −171462
number of wave vectors 831 831 1068 1068 838 838 1028 1028
EFourier/kB (K) 44677 44677 44409.4 44409.7 28897.4 28897.5 22337.2 22323.8
Eself/kB (K) −11581958 −11582033 −8686468 −8686525 −5790979 −5791017 −2895489 −2895508
EIntra/kB (K) 11435363 11435437 8576522 8576578 5717681 5717719 2858841 2858859
Eself+Intra/kB (K) −146595 −146596 −109946 −109947 −73298 −73298 −36648 −36649
ETotal/kB (K) −721254 −721255 −501259 −501259 −328153 −328153 −160912 −160912

aEself and EIntra represent the Coulombic energy of an atom with itself and between atoms in the same molecule, respectively. Values from the NIST
reference calculations (ref 32 are shown for comparison).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c01058
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


whole system, we use a CUDA block to calculate the structure
factor of a k-point and parallelize over the atoms in the system.
For the Fourier part of the Ewald summation, the

intramolecular and self-exclusion energies are crucial. Since
single-molecule moves only change a small number of atoms,
the intramolecular and self-exclusion energies are calculated
before the simulation starts, stored on the CPU, and used
when a swap move is performed. This avoids the need to
calculate this energy every time a molecule is swapped into or
out of the system, thus eliminating the need to launch a CUDA
kernel to calculate this for only one molecule. However, when
calculating the total energy of the system, the self-exclusion
and intramolecular energies for all the molecules in the system
are recalculated.

■ RESULTS
The simulations were performed on a local GPU workstation
with an RTX 3090 GPU and an AMD Threadripper 3960X 3.8
GHz 24-core/48-thread processor CPU for all our test cases
unless otherwise stated. Although the test cases were
conducted on the local machine, the source code, the
compilation, the setup files, and examples have also been
prepared for supercomputer clusters such as Perlmutter of the
National Energy Research Scientific Computing Center
(NERSC) and Quest of Northwestern University.

Benchmark Results for SPC/E Water. As a first test, we
calculated the reference energies for the four configurations of
SPC/E water from the NIST reference calculations.32 The
results summarized in Table 1 show that the gRASPA code is
able to reproduce the energies of the given configurations.
Details about the calculations are provided in the SI.

GCMC Simulation of CO2 Adsorption in MFI Zeolite.
In this example, we used the adsorption of CO2 in MFI zeolite
at 298 K as a test case to demonstrate the efficiency of
gRASPA compared to RASPA-2, which has undergone
extensive testing previously. The RASPA convention, adopted
by RASPA-2,23 RASPA-3,33 and gRASPA, uses the number of
cycles instead of steps for simulations, and each cycle consists
of N steps, where N equals the maximum of 20 and the
number of molecules in the system at the beginning of the
cycle. Here, we performed 30,000 cycles for initialization of the
system and 30,000 cycles for gathering the averages. Each
move was chosen with equal probability among translation,
rotation, reinsertion, and swap moves. For a swap move, an
insertion or deletion is chosen with an equal probability. The
force field parameters are summarized in Table S3.
Figure 1 shows that the three codes generate consistent

results. Regarding the simulation time, we can see that
gRASPA is 4−5 times faster than the single-core RASPA-3.
RASPA-3 is already faster than RASPA-2, and our gRASPA
code pushes this limit further, showing a 19-fold acceleration in
computational efficiency compared to RASPA-2. When
evaluating the short-range pairwise interaction energies, the
gRASPA code, by default, performs summation, or more
technically speaking, reduction on four different values:
framework-adsorbate vdW, adsorbate−adsorbate vdW, frame-
work-adsorbate short-range Coulombic, and adsorbate−
adsorbate short-range Coulombic interactions. This means
four parallel reductions must be performed to calculate the
sum of these different types of interactions correctly. For long-
range interactions, there are two reductions for the framework-
adsorbate and adsorbate−adsorbate long-range interactions.
We designed a special version of gRASPA, referred to as

“gRASPA-fast” in Figure 1, which disables the separate
reporting of the energies for individual interaction types.
Using this Fast Option, only the total energy, which is the sum
of the six different types, is returned. Although this gRASPA-
fast version disables some functionalities, it does not change
the simulation result, such as the number of molecules or the
trajectory of the Markov chain; it simply reduces the number
of reductions that must be performed for the energy
calculations. Thus, the computation time is reduced from
228.3 to 188.7 s for CO2 adsorption in MFI at 298 K and 104
Pa, a 20% performance improvement compared to the default
gRASPA implementation.
We also investigated the GPU usage and benchmarked

gRASPA’s performance for simulations with only canonical
moves (translation, rotation, and with/without reinsertion).
The numbers are summarized in Table S4b for systems with
2.5 CO2 molecules per unit cell (and varying numbers of unit
cells), which is the loading from the GCMC simulation shown
in Figure 1 at 104 Pa. Table S4b shows that as the simulation
size increases, the simulation time, GPU memory and GPU
utility increase. When the size of the simulation increases by 16
times from 8 unit cells to 128 unit cells, the number of MC
steps per second only decreases by half.

Use of Nvidia Multi-Process Service (MPS). Nvidia
MPS is a binary-compatible implementation of the CUDA API
that utilizes the multiple hardware queues to enable CUDA
kernels from multiple processes to be offloaded to the same
GPU without changing the code or recompiling the executable.
It is especially useful since the systems of interest for
adsorption simulations are typically small, and a single
gRASPA simulation underutilizes the GPU. We tested the
performance of the CO2-MFI simulations using gRASPA and
Nvidia MPS on one GPU at 298 K and 104 Pa using 5000 MC
cycles. The simulation uses the same MFI structure and force
field parameters as those in Figure 1. As comparisons, a
RASPA-2 and RASPA-3 simulation were also performed on a
CPU core with the same simulation condition and number of
cycles. Table 2 summarizes the performance metrics. Here, we
call the number of simulations performed on a single GPU
simultaneously the throughput. We can see from the table that

Figure 1. Simulation time and average loading comparisons for
GCMC simulation of CO2 adsorption in MFI zeolite using 8 unit cells
at 298 K using different MC software. “gRASPA-fast” denotes the
special version of gRASPA that disables the energy type separation.
Data in this figure is summarized in Table S4a. For the error bars
reported in the table, we show the 95% confidence interval, which is
two times the standard deviation of the block averages in the number
of molecules.
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by utilizing MPS, it is possible to have high throughput with
some sacrifice in the speed of each simulation: for example,
with only one simulation on a GPU, it takes 17.9 s. Using MPS
and running two simulations, we double the throughput but at
the cost of making each simulation 3.3 s slower. This creates an
18% speed decrease for each simulation, but the throughput is
doubled; thus, it is very profitable to increase the throughput
further. To quantify this competing relationship between the
throughput and the speed ratio, we call the product of number
of simulations performed concurrently and the speed of each
simulation compared to serial RASPA-3 the performance index
(PI) o f gRASPA for the cur ren t app l i c a t ion :

= ×PI N Speedratiosim , where Speed ratio is defined to be
the ratio of simulation time between serial RASPA-3 and
gRASPA: Speed ratio = TimeRASPA−3/TimegRASPA.
Figure 2 shows that the Fast version (gRASPA-fast) gives a

better PI than the gRASPA default option. For the GPU
performances, the default option reaches maximum perform-
ance at ten simulations, while the Fast Option has not reached
a maximum even at 24 simulations. Figure 2 also shows the
CPU baseline performance from RASPA-3 which represents

the performance by running N serial CPU simulations
independently. The CPU baseline outperforms the GPU PI
after 15 simulations, meaning the GPU simulations are slower
than serial CPU RASPA-3 if more than 15 simulations are
performed simultaneously on one graphic card. However, the
CPU performance is still below the Fast-Option GPU
performance even at 24 simulations. Thus, for high-throughput
screening studies where the requirement on the level of details
for different types of energies is low, the user can switch to the
Fast Option to take advantage of both the speed and the
throughput. After initial screenings of materials, the user can
switch back to the default option of the gRASPA code for
better interpretability of thermodynamic properties and
statistical averages. Another possible strategy is to run
initialization and equilibration cycles for MOFs using MPS
and the Fast version of the code, then run the production
cycles to gather detailed adsorption properties using the default
option of the code.

Pure Component and Mixture Simulations for
Separating CO2/CH4 in a Mixed Ligand Framework.
Besides simulating single component adsorption, the code can
also simulate mixture adsorption via GCMC or Gibbs Monte
Carlo. Here, we present GCMC simulations for CO2/CH4
separation in the MOF Zn2(NDC)2(DPNI) synthesized by Ma
et al.,35 where NDC is 2,6-naphthalenedicarboxylate and DPNI
is N,N′-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide.
Bae and co-workers conducted GCMC simulations using the
MuSiC36 code at 296 K for an equimolar mixture of CO2 and
CH4 in this MOF, and they predicted that it is a promising
material for CO2/CH4 separations, especially for natural gas
purification.37 We conducted the mixture calculation using the
same system as Bae et al.37 For the single component and
mixture calculations, the fugacity coefficients for each species
were calculated using the Peng−Robinson equation of state.38
The fugacity coefficients are summarized in Table S5. For the
molecular representations of CO2 and CH4, we used the
TraPPE model39 and Goodbody et al.40 parameters,
respectively. The Lennard-Jones parameters for the framework
atoms were from the DREIDING force field,41 and the partial
charges were taken from Bae et al.37 Tables S6 and S7
summarize the parameters used. Ten million initialization steps
were used to equilibrate the system, and 10 million production
steps were used to generate the averages. Each step randomly
chooses a move from translation, rotation (just for CO2),
reinsertion, swap (insertion or deletion), and identity change
move (for mixture simulation) with equal probabilities. The
excess loadings for CO2 and CH4 are reported. The binary
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fractions for component i in the adsorbed and bulk phases,
respectively. We report the binary selectivity for CO2. As a
comparison, we also present the results at the same pressure
using RASPA-2.23 For these RASPA-223 simulations, 20,000
initialization and 20,000 production cycles were used, while the
other simulation settings were the same as gRASPA. Other
details about the simulation setup are summarized in the SI.
Figure 3a shows that the excess loadings for the single-

component CO2 and CH4 adsorption calculated from gRASPA
are within the error bars of those calculated with RASPA-2.
Figure 3b shows that the loadings from the mixture simulations
from the two codes are also in good agreement. The only
difference can be observed for the selectivity, but selectivity is
highly sensitive to small differences in the loadings of

Table 2. Speed Comparisons of the gRASPA Code Using
Nvidia-MPS versus Single-CPU-Core RASPA-2 and RASPA-
3 for CO2 Adsorption in MFI Zeolite at 298 K and 104 Pa
using 5000 MC Cycles

number of
simulations

GPU
time
[s]

GPU
time(gRASPA-
fast) [s]

RASPA-2-serial
[s/simulation]

RASPA-3-serial
[s/simulation]

1 17.9 15.2 329.4 75.6
2 21.2 16.4
3 23.2 17.7
5 29.6 20.9
8 41.6 25.3
10 49.8 29.1
12 60.1 32.9
15 76.5 38.7
20 106.9 49.2
24 135.8 57.8

Figure 2. Performance index, defined by the speed ratio per
simulation compared to serial RASPA-3 times the number of
simulations running concurrently via Nvidia-MPS, versus the number
of simulations running concurrently. Green line shows the baseline
performance of RASPA-3 using a single CPU core. Since RASPA-3 is
serial, there are no diminishing returns when multiple simulations are
performed concurrently on multiple CPU cores.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c01058
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c01058/suppl_file/ct4c01058_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.4c01058/suppl_file/ct4c01058_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01058?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01058?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01058?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01058?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


individual species, especially in the low pressure region where
the loading of the species in the denominator of the selectivity
equation is small. In our case, although the CH4 loadings
between the two codes agree well, the tiny difference gets
magnified and becomes noticeable in the selectivity.

Gibbs Ensemble and Constant-Pressure, Constant-
Temperature Monte Carlo Simulations. Gibbs Ensemble
Monte Carlo for Phase Equilibrium Calculations. Besides
GCMC, another popular MC algorithm, Gibbs Ensemble
Monte Carlo (GEMC)42 in either the canonical ensemble
(NVT) or constant-pressure, constant-temperature ensemble
(NPT), is also implemented in gRASPA for single
components. The Gibbs ensemble allows for the direct
determination of the phase equilibrium of fluids from a single
simulation by explicitly simulating the two phases in two
simulation boxes. In the canonical ensemble, GEMC fixes the
total volume of the two boxes, the total number of molecules in
the two boxes, and the temperature of both systems. During
the simulation, in addition to the thermal equilibration moves
in both boxes (e.g., translation and rotation), the two boxes
also experience volume exchange moves and particle transfer
moves in the NVT ensemble. The former move changes the
volumes of both boxes while keeping the total volume of the
two boxes fixed, and the latter move selects a particle in one
box and attempts to transfer it to the other box. Using this
method, the Siepmann group has developed the widely used
TraPPE models39,43 for a range of molecules by fitting the
GEMC results to experimental values. For NPT-Gibbs, instead
of the volume exchange move, the two boxes experience the
NPT volume move independently, which randomly chooses a

box and randomly perturbs the volume of the box. Here, we try
to reproduce the vapor−liquid equilibrium for CO2 using
GEMC and the TraPPE-UA39 model and compare the results
against the experimentally reported VLE data44 and transition
matrix Monte Carlo simulations from NIST.45 In addition to
the Gibbs ensemble simulations, we also performed single-box
NPT (NPT MC) simulations for both the vapor and liquid
phases as an additional validation.
For the NVT-Gibbs Monte Carlo simulations, we used

10,000 initialization cycles and 10,000 production cycles to
generate statistical averages. For each cycle, N steps are
performed, where N = max {20, NBoxd1

, NBoxd2
} and NBoxd1

and
NBoxd2

are the numbers of molecules in the two boxes,
respectively. For each step, a move is randomly chosen from
translation, rotation, reinsertion, Gibbs particle transfer, and
Gibbs volume moves with probabilities equal to 1:1:1:1:0.1. A
cutoff of 15.0 Å for vdW and 15.0 Å for short-range Coulombic
interaction was used for CO2. Tail corrections were used. The
Lennard-Jones parameters of the pseudoatoms in the CO2
molecule are summarized in Table S8a. Table S8b provides the
initial setup of the CO2 NVT-Gibbs simulations, the average
densities, and the timing benchmarks. Note that some of these
calculations were performed on an Intel i9−14900KF CPU
and an Nvidia GeForce RTX 4090 GPU, while some others
were done on L40S and A100 GPUs. The GPU used for the
simulations is labeled in Table S8b.
The NIST computational data for CO2 also provided the

equilibrium pressure for each temperature, and we used these
equilibrium pressures45 for NPT-Gibbs simulations. The NPT-
Gibbs simulations used 10,000 initialization cycles and 10,000
production cycles. For each step, a move is randomly chosen
from translation, rotation, reinsertion, Gibbs particle transfer,
and volume change moves with probabilities equal to
1:1:1:1:0.1. As noted above, as a complement to Gibbs
Monte Carlo, we also ran NPT MC simulations for the vapor
and liquid phases separately. These simulations used 25,000
initialization and 25,000 production cycles. Each MC step used
a move that was randomly chosen from translation, rotation,
reinsertion, and volume moves with probabilities equal to
1:1:1:0.1. Other details of the calculations are provided in the
SI. All three sets of simulations (NVT Gibbs, NPT Gibbs, and
single-box NPT) used the same force field parameters and
cutoffs. Table S8c,d provide the detailed initial setup, the
average densities, and the timing benchmarks of the NPT-
Gibbs calculations and NPT MC, respectively.
Figure 4 summarizes the VLE curves for CO2 simulated by

gRASPA using NVT-Gibbs, NPT-Gibbs, single-box NPT MC,
and simulation results from NIST using TMMC simulations
with the same force field.45 Experimental values reported by
NIST44 are also plotted as reference. Our calculated vapor and
liquid densities are in good agreement with the NIST
simulated and experimental values. This example demonstrates
the ability of gRASPA to perform reliable Monte Carlo
simulations in constant-pressure and constant-temperature
Gibbs ensembles.
Timing Benchmarks and Profiling for NPT MC. Single-box

NPT simulations provide a useful way to benchmark a code’s
performance, because the cost of the energy calculations
depends on the number of atoms, and the number of atoms is
fixed in single-box NPT MC (unlike in GCMC or Gibbs MC).
In addition, NPT MC can be used to measure the performance
of the calculation of the total energy of the system since a

Figure 3. GCMC simulations for (a) single-component and (b)
equimolar mix tures o f CO2 and CH4 in the MOF
Zn2(NDC)2(DPNI) at 296 K. Stars are the CO2 loadings, squares
are CH4 loadings, and circles are the calculated selectivity of CO2 over
CH4 from the excess loadings. Blue results are from gRASPA, red
results are from RASPA-2.
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volume change move is used. Here, we used Nsight compute, a
profiling software by Nvidia to profile the performance for
creating 700 CO2 molecules and performing 2000 MC steps in
an NPT MC simulation. The results including the average
execution time for each CUDA function are shown in Table
S8e,f. We can see that the total energy calculations take much
more time than any other CUDA function. Besides the top
three functions in terms of averaged time elapsed in that table,
namely “TotalVDWRealCoulomb”, “TotalFourierEwald”, and
“TotalFourierEwald_CalculateEnergy”, for the total energy
calculations, the only other function that is involved in
calculating the total energy is calculating the total intra-
molecular and self-exclusion energy, which is a part of the total
Fourier energy.
Comparing the short-range calculations between CBMC

trial moves and non-CBMC moves shows that the “Calcu-
late_Multiple_Trial_Energy_VDWReal” function, which han-
dles CBMC trial energy calculation (15.35 μseconds, 8 trial
positions and 8 trial orientations used), is faster than
“Calculate_Single_Body_Energy_VDWReal,” which handles
non-CBMC moves (15.59 μseconds). This indicates that non-
CBMC moves, such as translation and rotation, under-utilize
the GPU. While the CBMC trial energy move needs almost
eight times more calculations compared to the non-CBMC
move, it is on average 0.2 μsecond faster due to its highly
parallelized nature.
Initialization of the wave vectors prior to the Fourier energy

difference calculation, namely “Initialize_WaveVector_Rein-
sertion” and “Initialize_WaveVector_General”, also involves
some overhead, and they are ranked the fifth and sixth in Table
S8e among all the CUDA functions doing preparations. This is
because of the overhead of serial initialization for wave vectors
as the later wave vectors depend on the previous ones for each
atom. This is a potential part of the code that could be further
optimized. It is also worth noting that the Fourier energy
difference calculation “Fourier_Ewald_Diff”, the function
responsible for calculating the Fourier energy difference for
single-particle MC moves, is the fastest CUDA function among
all energy calculation functions. Despite the latency in
preparing the wave vectors for the Fourier part, which are
“Initialize_WaveVector_Reinsertion” and “Initialize_Wave-
Vector_General”, the actual calculation can be highly
parallelized.

The sections above demonstrate functionalities of gRASPA
that exist in RASPA-2 and other CPU Monte Carlo codes.23

Below, we demonstrate the development and the usage of new
functionalities that take advantage of GPU parallelization.

Machine Learning (ML) Potential for Modeling Gas
Adsorption in Metal−Organic Frameworks. Most molec-
ular dynamics and Monte Carlo simulations rely on empirical
force fields due to their computational efficiency. For vdW
interactions, it is typical to assume pairwise interactions
between the atoms using the Lennard-Jones equation.
Electrostatic interactions are commonly modeled using fixed
point charges on the atoms. In addition to these nonbonded
interactions, bonding terms are included for bond stretching,
bond angle bending, and dihedral angles. Density-functional
theory (DFT), which provides an approximate solution to the
Schrödinger equation, is expected to be more accurate for
calculating energies and forces than empirical force fields in
many cases. There have been works that try to utilize first-
principles calculations in MC simulations. For example, work
by Fetisov et al.46 developed the First-Principles Monte Carlo
(FPMC) method in the CP2K package47 to simulate the
reaction equilibrium of a mixture of nitrogen and oxygen at
high temperature and pressure to mimic the effect of
atmospheric lightning strikes. They found that FPMC shows
good agreement with the simulation results parametrized to
experimental data. However, the computational cost of
applying DFT in molecular simulation is tremendously
high,48 as it scales cubically with the number of electronic
degrees of freedom.49

Recent advances in machine learning (ML) force fields or
ML potentials provide a new route to strike a balance between
computational expense and accuracy.50,51 The general idea of a
ML potential is to use a ML model, such as a neural network,52

to learn the mathematical mapping from the atomic environ-
ment to the atomic forces and system energy by training the
ML model using high-fidelity quantum mechanical data.
Substituting the classical force field with such a ML potential
model in molecular simulation allows for modeling molecular
and material systems at larger spatial and temporal scales with
ab initio level accuracy. Since the seminal work on ML
potentials around 2010,52,53 ML potentials have been
extensively studied and implemented in MD simulations.54

Compared to the popularity of ML potentials in MD, there
are very few applications of ML potentials in Monte Carlo
simulations to date. This wide difference in application can be
understood from the following factors. Most ML potentials are
parametrized to give the energy of the entire system, but most
MC algorithms move one molecule at a time and thus only
need the (change in) energy of a single molecule to accept or
reject each move. By assuming pairwise additivity, the
computational cost of evaluating the energy difference before
and after a Monte Carlo move is reduced in simulations using a
classical force field because only the pairwise energies related
to the moved molecule (instead of the total energy of the
configuration) are required. However, for MD simulations, the
total energy of the system and the forces on all atoms are
evaluated at every step. This makes MD better suited for ML
potentials with many-body features. However, MC is the most
popular method for predicting adsorption properties and
vapor−liquid equilibria. Especially in GCMC, which mimics an
open system where the number of adsorbate molecules
changes during the simulation using swap moves,9,34 MC

Figure 4. Vapor−liquid equilibrium (VLE) curves for CO2 using the
TraPPE-UA model taken from ref 39, while the simulated TMMC
CO2 results are from ref 45, and experimental CO2 data are replotted
from ref 44.
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moves are more direct and intuitively understandable
compared to MD in the grand canonical ensemble.55−57

Attempts to implement ML potentials in Monte Carlo
simulations, specifically GCMC for modeling gas adsorption in
MOFs, appeared very recently. Current implementations of
GCMC with an ML potential largely rely on a customized
Python script58 and the GCMC functionality in the LAMMPS
simulation software.59,60 While LAMMPS implements the
GCMC algorithm with standard MC moves, such as
translation, rotation and exchange moves (insertion and
deletion), advanced biased moves, such as configurational
bias and energy bias moves, are missing in LAMMPS. These
biased MC moves are essential for efficient simulations of large
molecules and for systems with strong specific interactions,
such as water adsorption in MOFs.
gRASPA works with ML potential models that are

developed using either TensorFlow61 or PyTorch.62 To
demonstrate gRASPA’s compatibility with TensorFlow, we
implemented a simple neural network ML potential developed
by Li-Chiang Lin and co-workers (referred to as the “Lin
model” hereafter).63 The Lin model was designed particularly
for adsorption systems. The model takes transformed pair
distances as input and predicts the adsorption energy between
adsorbate molecules and a framework. They found that their
model can predict Henry’s constants of adsorbates such as
CO2 and H2O in Mg-MOF-74.

27 In addition to the Lin model,
we also implemented a state-of-the-art ML potential model, the
Allegro model, in gRASPA to demonstrate the compatibility
with PyTorch. The Allegro model64 is an equivariant neural
network interatomic potential for predicting system energy and
atomic forces based on the local atomic environment in the
simulation box. The Allegro model was able to reproduce the
properties of ab initio MD, such as the radial distribution
function for lithium thiophosphate.64 Due to its localized
atomic features, the Allegro model demonstrated exceptional
scalability to large systems through parallel computation.
Recently, Allegro’s scalability was illustrated by a nanoseconds-
long MD simulation for a 44-million atom structure of a
complete, all-atom, explicitly solvated HIV capsid.65

We used both the Lin model63 and the Allegro model64 to
calculate adsorption isotherms of argon and CO2 in Mg-MOF-
74. The code incorporates the ML potential into every MC
move used for GCMC simulations, including CBMC. We
benchmarked the accuracy and speed of the two models and
point out the bottleneck that limits the usage of ML potentials
in MC simulations.
General Setup. We implemented a hybrid scheme for

modeling gas adsorption66 where the host−guest interactions
are modeled using a ML potential while guest−guest
interactions are still modeled using a classical force field
since the TraPPE force field is well-tuned for capturing the
phase equilibrium of adsorbates.43 Adopting this hybrid
modeling scheme is helpful to effectively reduce the required
amount of training data for the ML potential. In this case, only
configurations with one adsorbate molecule are needed for
producing training data; otherwise, training data should
contain MOF structures at multiple loadings of adsorbate
molecules so as to enable the ML potential to predict the
entire adsorption isotherm accurately.
For non-CBMC moves, such as translation moves, the

classical energies are evaluated first. This includes the vdW,
short-range and long-range Coulombic interaction energies for
framework-adsorbate and adsorbate−adsorbate pairs. Then,

the classical framework-adsorbate energies are discarded and
re-evaluated using the ML potential. Although the classical
framework-adsorbate energies are unused for the acceptance
criteria, they are used for determining whether the trial
positions overlap with the framework. If there is an overlap
when evaluating the classical framework-adsorbate energies,
the expensive ML evaluation can be skipped.
For CBMC moves, such as the swap insertion move, the

classical vdW and real part of the Coulombic energies are used
to select which of the trial positions is chosen for the adsorbate
molecule. Here, we denote the Rosenbluth weight as Wr (see
SI for detailed formula). The framework-adsorbate (FA) vdW
and real part of the Coulombic energies for the selected trial
configuration are EvdW, FA and ECoulomb−real, FA. Once one of the
trial configurations is selected, the Fourier part of the
Coulombic energy of the adsorbate molecule for the selected
trial configuration ECoulomb−Fourier, FA is calculated, and its
contribution to the Rosenbluth weight is added to the current
value of Wr (for more information about the Rosenbluth
weight, please refer to the Monte Carlo moves section in the
SI):

= ×W W Eexp( )r r Coulomb Fourier,FA (1)

The ML potential is then calculated for the selected trial
configuration, and the ML-corrected Rosenbluth weight Wr,ML
is calculated as follows:

= ×W W Eexp( )r r,ML ML (2)

where β is the inverse temperature (1/kBT, where kB is
Boltzmann’s constant), and ΔEML is the difference in energy
between the ML potential and the classical interaction for the
framework-adsorbate:

= + +E E E E E( )ML ML vdW,FA Coulomb real,FA Coulomb Fourier,FA

(3)

Once Wr,ML is calculated, it is plugged into the acceptance
rules for CBMC moves, including the swap insertion, swap
deletion, and reinsertion moves, to determine the fate of the
move:
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(4)

where Wr,ML,New and Wr,ML,Old are the ML-corrected Rose-
nbluth weights for the new and old configurations, V is the
volume of the simulation box, f is the imposed fugacity of the
GCMC simulation, and ⟨WIG⟩ is the averaged Rosenbluth
weight of an isolated molecule in the gas phase evaluated using
the classical force field. For a rigid molecule, ⟨WIG⟩ is set to
1.10,67

Lin Model. For the implementation of the Lin model, every
adsorbate-framework atom pair type is considered. For each
type of pairwise interaction, the nine smallest distances are
sorted in ascending order. Then, for each of the nine smallest
distances, the raw pairwise distance r is transformed into six
features, i.e., exp(−r), 1/r, 1/r4, 1/r6, 1/r8, and 1/r10. For
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example, for CO2 adsorption in Mg-MOF-74, there are eight
guest−host atom pair types, i.e., C−Mg, C−O, C−C, C−H,
O−Mg, O−O, O−C, and O−H, where the first atom type is
from the guest molecule (CO2) and the second is from the
MOF material. For each type of pair, say C−Mg, we pick the
first nine smallest distances {r1, r2, ···, r9} in ascending order.
Then for each distance, we calculate the six distance features,
e.g., for distance r1, we have { exp (−r1), 1/r1, 1/r14, 1/r16, 1/r18,
1/r110}. Therefore, for each atom type pair, we have 9 × 6 = 54
features. Because there are eight unique pairs, the total number
of input features for a single CO2 configuration is 54 × 8 =
432. An illustration of this featurization process is available in
Figure S4. With these features calculated, the model can then
make predictions. Since it is a shallow model with only five
hidden layers (see SI for more details), we performed the
predictions on the CPU instead of the GPU to avoid latencies
in loading data to and from the GPU.
Allegro Model. The implementation of the Allegro model64

in LAMMPS8 is based on the neighbor list for each atom in
each subdomain. The use of subdomains is a technique for
handling large systems of atoms using message-passing
interface (MPI) processes by dividing the simulation box
into parts. Then, each CPU core can handle a subdomain
efficiently. Atoms from neighboring subdomains are stored as
“ghost” atoms for each subdomain. In gRASPA, to reproduce
the effect of the ghost atoms, we generate 26 (3 × 3 x 3−1)
replica cells that are exact copies of the central cell and
surround the central cell, where the central cell is the
framework structure used for generating the training data for
ML potential. A detailed description of the featurization
process for using the Allegro model is summarized in the SI.
Results. We implemented the Lin model and the Allegro

model in gRASPA for two test cases: (1) Ar adsorption in Mg-
MOF-74 at 77 K, where the model was trained using classical
force fields for all interactions. This case was chosen to check if
ML potential models can reproduce the adsorption isotherm of
reference classical simulations; (2) CO2 adsorption in Mg-
MOF-74 at 313 K, where guest−host interaction energies were
predicted by the ML potential at ab initio accuracy. This case
highlights the superiority of the ML potential in modeling
challenging gas adsorption systems where classical force fields
fail to match experimental data.
Ar Adsorption in Mg-MOF-74. In this test case, we

generated data to train the ML model using an NVT MC
simulation at 80,000 K using classical force fields with only one
Ar molecule in the unit cell of Mg-MOF-74. Using such a high
temperature was intended to generate a training data set
containing diverse configurations. ML potentials were trained
to regress the classical Ar binding energy for a given Ar
configuration. Once the ML models were validated, we
performed GCMC simulations using gRASPA to test the
performance of the ML potential models in reproducing the
classical force field. Details for training data generation, ML
training, and GCMC simulations including the classical force
fields are available in Section S5.1. Simulation and ML training
input files are also available in our github repository: https://
github.com/snurr-group/gRASPA/tree/main/Examples.
In this simple case, both the Lin and Allegro models can

regress the classical force field well. The mean absolute errors
(MAE) for the Lin and Allegro models are 1.64 and 0.77 kJ/
mol (equivalently, 17.00 and 7.98 meV), respectively, based on
1,000 testing points. Parity plots showing the performance of
both models on testing data are available in Figures S1 and S2.

As shown in Figure 5, the simulated adsorption isotherms of Ar
in Mg-MOF-74 at 77 K using both ML potential models agree

quantitatively with the reference classical simulations within
the statistical error of the simulations. The consistent results
confirm the correct implementation of the ML potential
functionalities in gRASPA and the validity of the Lin and
Allegro models for simple Lennard-Jones systems.
CO2 Adsorption in Mg-MOF-74. In the presence of open

metal sites in MOFs, classical force fields, such as the Universal
Force Field (UFF)68 and DREIDING,41 typically fail to
reproduce the strong binding energies of adsorbate molecules
at low pressure. CO2 adsorption in Mg-MOF-74 is a well-
known example of this kind. In previous studies, tailored
analytical force fields were developed to capture the strong
interactions of CO2 with the open Mg site.

69 In our work,
without restricting the potential energy surface to a specific,
analytical form, we used ML to model the complex potential
energy surface of a single CO2 molecule interacting with the
MOF to a high accuracy. We generated training data of CO2
binding energies in the unit cell of Mg-MOF-74 using DFT
(see details in the SI). Following the ML architecture, the Lin
model was trained with only the energy data, while the Allegro
model was trained using both the energy and force labels with
equal weights, as recommended in the original work.64,70 We
found that training with additional force information benefited
the overall accuracy of the Allegro model but also increased the
training time. If the training time permits, we suggest training
the Allegro model using both energy and force data, even
though only the output energy is useful in GCMC simulations.
With both the Lin and Allegro models ready, we performed
GCMC simulations using gRASPA to predict CO2 adsorption
in Mg-MOF-74 at 313 K and compared simulated results to
experimental values. Details of training data generation, ML
training, and GCMC simulations are available in Section S5.2,
and the necessary input files are also provided in the SI as well
as the GitHub repository at https://github.com/snurr-group/
gRASPA/tree/main/Examples.
Figure 6 shows the comparison among simulated adsorption

isotherms and experimental data. The Lin and Allegro models
agree with each other very well, as expected, since they were
trained on the same DFT data. Both the Lin and Allegro
models predict adsorption isotherms that are in much better
agreement with the experimental data than the simulations
using a classical potential. The ML potential simulations
especially outperform the classical simulations at low pressures

Figure 5. Simulated adsorption isotherms for Ar in Mg-MOF-74 at 77
K. Reference adsorption isotherm was generated using the classical
force field shown in Table S9 and is shown in red. Adsorption
isotherms predicted by the Lin and Allegro models are shown in green
and blue, respectively.
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(<50,000 Pa), where strong interactions between CO2
molecules and the open Mg sites dominate the adsorption.
Deviations of ML predicted adsorption loadings from the
experimental data may be attributed to limitations of the DFT
functionals58 or possible defects in the experimental samples.
These results show the great promise of ML potentials for
simulating challenging adsorption systems where classical force
fields fall short.
Benchmarking Simulation Time. Finally, we benchmarked

the simulation time using the ML potentials compared to
classical force fields in gRASPA. For the Lin model, we first
measured the time for calculating 10,000 energies. We wrote a
small C++ program to call the model prediction 10,000 times
on the same input features. We found that by running the
model on the CPU instead of loading it and running it on the
GPU, the model prediction is 4 times faster (Table S10). We
also benchmarked the time for performing 10,000 Monte Carlo
steps using both ML potentials for predicting argon adsorption
in Mg-MOF-74 at 77 K and 100 Pa. The results are shown in
Table 3. In this table, we divided the time into three categories:

classical calculation time (pairwise distances, LJ), feature
preparation time (sorting pairwise distances, generating
neighbor lists), and prediction time (time spent by the ML
model). It is worth noting that for the Lin model, when we
further decomposed the preparation time for the features, we
found that sorting the nine smallest pairwise distances between
argon and the MOF is the most time-consuming step. It took
0.67 s using the “std::sort” function with CPU parallelism via
the keyword “stdpar = multicore” during the compilation.
Thus, we can recommend that for future development of fast
ML potential models for MC simulations, developers should
take the performance of their model as well as the feature
preparation into consideration to develop a model that is both

accurate and cost-effective to be deployed in MC simulation
software.
In summary, the Allegro model shows much lower MAE

than the Lin model (Figures S6 and S7) thanks to Allegro’s
equivariant architecture for describing the detailed local
environment of nonspherical molecules. Although, in general,
the Allegro model would be recommended due to its state-of-
the-art accuracy, training of an Allegro model is more time-
consuming (around tens of hours on an Nvidia A100 graphic
card) compared to the Lin model (several minutes on a single-
core CPU). In addition, due to its simplicity, the Lin model
executes much faster than the Allegro model during GCMC
simulations (Table 3). Thus, the Lin model could be used to
generate preliminary results.

Transition-Matrix Monte Carlo in the Grand Canon-
ical Ensemble (GC-TMMC). GC-TMMC is a powerful tool
for obtaining relative free energies and relative probabilities of
observing different states in phase coexistence72 and studying
adsorption phase equilibrium. It was originally proposed by
Fitzgerald et al.28,29 and then further developed by Errington et
al.72 for efficient implementation in GCMC using an additional
bias that helps the system sample the less-probable states with
higher frequencies. Recently, Siderius et al.73 have used it to
study the adsorption of CO2 in IRMOF-1 and argon in carbon
nanotubes, and Shen et al.74 extended the GC-TMMC method
to mixture simulations.
Here, we implemented GC-TMMC and tested it on TraPPE

CO2 vapor−liquid equilibrium39 and then on ethane
adsorption in hypothetical MOF #66775 at 179 K.76 We
calculated the free energy versus density or loading for both
systems and compared them against the results reported by
NIST and by Li et al.,76 respectively. The force field
parameters are reported in Tables S11 and S12 for CO2 and
for ethane in MOF #667, respectively.
In GC-TMMC simulations, for each Monte Carlo move, the

collection matrix C is updated according to the acceptance
probability for the Monte Carlo move:

= +
= +

C C P

C C P

(Old New) (Old New) (Old New)

(Old Old) (Old Old) 1 (Old New)
Acc

Acc

(5)

where old and new represent the old and the new macrostates
for the attempted Monte Carlo move, and PAcc is the
acceptance probability of the move. We defined macrostates
by the number of molecules in the system, N. In the grand
canonical ensemble, there are three possible directions in the
macrostate space for a Monte Carlo move, which are +1 for
insertion moves, 0 for canonical ensemble moves such as
translation and rotation that do not change the number of
molecules, and −1 for deletion moves. We denote the new
macrostate as N′, so N′ can be either N−1, N, or N + 1. Then,
the probability in the transition matrix for N → N′ can be
derived from the elements in the collection matrix C:

=
+ + +

P
C N N

C N N C N N C N N
( )

( 1) ( ) ( 1)

N N

(6)

From the probabilities in the transition matrix, the
probability for each macrostate Π can be calculated as

Figure 6. Adsorption isotherms for CO2 in Mg-MOF-74 at 313 K.
Simulated adsorption isotherms using the classical force field, the Lin
model, and the Allegro model are shown in red, green, and blue,
respectively. Experimental isotherm from Mason et al. (ref 71) is
shown in black as a comparison.

Table 3. Benchmarking the Performance of 10,000 Monte
Carlo Steps using the Lin and Allegro Models for Argon
Adsorption in MgMOF-74 at 77 K and 100 Paa

model
classical time

[s]
preparation time

[s]
prediction time

[s]
total time
[s]

Lin 0.43 0.91 1.44 2.78
Allegro 0.43 0.69 316.11 317.23
aLin model prediction is performed on the CPU, while the Allegro
model prediction is performed on the GPU.
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and each macrostate has a related bias η = −lnΠ(N; μ, V, T)
that helps the GC-TMMC simulation sample the less probable
states more frequently. The bias for each macrostate was
updated every 1 million steps, and a total of 100 million MC
steps were performed. More details about GC-TMMC can be
found in the work of Hatch, Siderius, Shen, and Erring-
ton.72,73,77

To sample the free energies with higher efficiency, we
adapted a divide-and-conquer approach suggested by Siderius
et al.73 by dividing the space of the macrostates (number of
molecules in the simulation box) into different ranges and
running a separate simulation for each range. Each simulation
samples only the number of molecules within its range, and all
insertion or deletion moves that try to move out of the range
are rejected. This naturally works with the Nvidia-MPS
discussed in Section 2.
We used the same setup of the GC-TMMC simulation for

bulk CO2 using the TraPPE model
39 as reported by NIST.

Thus, we used a 30 × 30 × 30 Å3 cubic box and performed the
GC-TMMC simulations at temperatures between 230 and 300
K. More details of this set of simulations can be found in the
SI. We first located the equilibrium fugacity where the
probabilities of observing the gas and liquid phases are equal.
Then, the average density of a phase α is defined by

=
V

N N V T

N V T
1 ( ; , , )

( ; , , )
N

N (8)

where N is the number of molecules, and the summation is
over the values of N that fall within the range of phase α, and V
is the volume of the simulation box. In addition to equilibrium
loadings, the equilibrium pressures can also be calculated from
the grand potential Ω. The grand potential for phase α, Ωα =
−(ln (ΣN ∈ αΠ(N; μ, V, T)/Π(0; μ, V, T)).73 The pressure for
phase α, =p N V T V T(ln( ( ; , , )/ (0; , , ))k T

V N
B

At phase equilibrium for phases α and β, the grand potentials
are equal: Ωα = Ωβ. These pressures are also summarized in
Table 4. From Table 4, we can see that the densities of the two
phases, as well as the equilibrium pressures calculated by
gRASPA, are very close to the NIST values, showing that
gRASPA can generate the vapor−liquid equilibrium of TraPPE
CO2.
We then simulated ethane adsorption in hypothetical MOF

#667 at 179 K as the next test case. The saturation loading of
ethane at 179 K in MOF #667 is 289 molecules per unit cell
(375 cm3/cm3). So, we took the range of number of molecules

from zero to 320 and divided the range into five individual
simulations and ran them in parallel using Nvidia-MPS. Each
simulation handled a range of 64 ethane molecules. Additional
details about the simulations are summarized in the SI.
Figure 7 shows that there are three local minima in the free

energy profile. They correspond to the one stable and two

metastable loadings at the given pressure on the “canonical”
isotherm, which was obtained in previous work by performing
Widom test particle insertions at various loadings,76 as shown
in Figure S12. From the adsorption isotherm in Figure S12,
there are three plateaus and two steps. At 27,500 Pa, three
solutions exist on the stable and metastable regions along the
canonical isotherm, having loadings of 41.5 cm3/cm3 (32
molecule/uc), 140.2 cm3/cm3 (108 molecule/uc), and 358.4
cm3/cm3 (276 molecule/uc). We can see that the loadings for
the circled points on the canonical isotherms in Figure S12 and
the local minima in the free energy profile in Figure 7 match
well, validating our implementation of GC-TMMC in
gRASPA.
Such free energy profiles provide a rapid way to obtain the

adsorption isotherm since one can easily access the free energy
profiles via histogram reweighting:

= + N
k T

ln ln
( )

N N, ,
B (9)

where μ and μ′ are the current and desired chemical potential.
By plugging in the definition of fugacity =f W k TN

V Wr

IG B where WIG

Table 4. Summary of Equilibrium Vapor−Liquid Densities of TraPPE CO2a

T (K)

mol
Lvap

i
k
jjj y

{
zzz mol

Lliq
i
k
jjj y

{
zzz

equilibrium fugacity (Bar) equilibrium pressure (Bar)

230 5.000 × 10−1 (5.015 × 10−1) 2.540 × 101 (2.551 × 101) 7.812 × 100 8.588 × 100 (8.625 × 100)
240 7.173 × 10−1 (7.199 × 10−1) 2.462 × 101 (2.464 × 101) 1.102 × 101 1.245 × 101 (1.248 × 101)
250 1.006 × 100 (1.009 × 100) 2.371 × 101 (2.371 × 101) 1.499 × 101 1.744 × 101 (1.748 × 101)
260 1.389 × 100 (1.390 × 100) 2.261 × 101 (2.270 × 101) 1.977 × 101 2.378 × 101 (2.381 × 101)
270 1.891 × 100 (1.896 × 100) 2.160 × 101 (2.158 × 101) 2.531 × 101 3.156 × 101 (3.165 × 101)
280 2.575 × 100 (2.582 × 100) 2.030 × 101 (2.029 × 101) 3.167 × 101 4.112 × 101 (4.123 × 101)

aValues outside and inside the parentheses are generated from gRASPA and obtained from NIST (ref 45), respectively.

Figure 7. Free energy profile for ethane in MOF #667 at 179 K and
27,500 Pa calculated through GC-TMMC in gRASPA. The three local
minima are 40.3 cm3/cm3 (31 molecules/uc), 142.8 cm3/cm3 (110
molecules/uc), and 358.4 cm3/cm3 (276 molecules/uc).
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is the ideal chain Rosenbluth weight, V is the volume of the
simulation box, and ⟨Wr⟩ is the averaged Rosenbluth weight,
and the definition of excess chemical potential μex =
−kBTln⟨Wr⟩, eq 9 can be rewritten as

= + N
f
f

ln ln lnN f N f, ,

i
k
jjjjj

y
{
zzzzz (10)

where f and f ′ are the current and desired fugacities. The free
energy profile at different pressures yields the loadings of the
most probable states at these pressures, and the free energies
can provide insights into the adsorption system.

Framework Semiflexibility Move. In the original CPU
RASPA convention, the framework is considered one
component and one “molecule.” Although this convention is
straightforward and intuitive, it imposes some limitations on
MOFs because it does not take advantage of their modular
construction from metal nodes and organic linkers. For
example, this convention makes it difficult to incorporate a
MC move that moves only a part of the framework, such as
rotating one or more linkers or rotating a functional group on a
linker or on a node. To overcome this problem, in the gRASPA
code we enabled the separation of MOF components to make
the framework more modular. In the simulation input file, the
user can specify the parts of the MOF to be separated into
different components. Each framework component can then be
assigned different MC moves.
Using this capability, we considered para-xylene adsorption

in NU-200078 at 298 K and 3800 Pa. We used the same LJ
parameters and partial charges as used by Idrees et al.78 (Table
S13). We used a cutoff of 12 Å for both the vdW and the real
part of the Coulombic interactions. The vdW potentials were
shifted so that they reach zero at the cutoff. Although the
original LJ parameters and partial charges were derived for a
fully flexible framework model, just to show how our
semiflexible move works, we did not consider the bonding,
angle, and dihedral terms for this example. For p-xylene,
translation, rotation, reinsertion, and swap (insertion and
deletion) moves were attempted with equal probabilities. We
also included a linker rotation move that rotates a randomly
chosen linker around its linker axis to a random angle. Similar
to a translation or rotation move in the canonical ensemble,
the acceptance probability (Pacc) of this move is

= { }P min 1, e E
acc (11)

where β is the inverse temperature, and ΔE is the energy
difference between the newly rotated and the original state of
the selected linker. We used 100 million MC steps for the
simulation, which roughly equals 3.3 to 5 million MC cycles in
the RASPA terminology. We compared the results with and
without linker rotation (i.e., in a fully rigid NU-2000
framework) using the same number of MC steps.
Table 5 shows the simulated result with the linker rotations

compared to using a fully rigid framework model. We can see
from Table 5 that the linker rotation move yields a much
higher loading of p-xylene than the fully rigid model.
Compared to the experimental saturation loading, which is
1.88 mol/kg, the simulations with the linker rotation move are
in excellent agreement.
Figure 8 shows that the linker rotation move has a big effect

on the framework structure and the adsorbed p-xylene
configurations. It allows for denser packing of p-xylene
molecules in the channels. In the rigid framework, the p-

xylene molecules cannot efficiently utilize the space in the
channels. Thus, the rigid representation of NU-2000 leads to a
lower loading than the semiflexible framework simulation. The
results show that utilizing just a linker rotation move, which
focuses on one type of motion of the framework, can lead to
the same conclusion as in the original work with NU-2000,78

where the authors developed a fully flexible framework model
for NU-2000.
As expected, the linker rotation move makes the simulation

slower. The simulation with linker rotation moves took 6.5 h,
while the rigid framework simulation took 3.2 h for the same
number of MC steps. This is mainly because there are more pX
molecules for the linker rotation simulation, and intrahost
nonbonded interaction energies must be considered. In
addition, the energy calculation takes longer because the
linkers of NU-2000 are also subject to MC moves. However,
with GPU acceleration, the current gRASPA simulation time is
much less than that using RASPA-2. Thus, by incorporating a
modular framework representation and semiflexible framework
moves, gRASPA can facilitate the development of molecular
models and new force fields that take advantage of the modular
nature of MOFs.

High-Throughput Calculations Using CUDA Blocks.
By default, each gRASPA simulation utilizes multiple CUDA
blocks for computation (see also Method section). To enable a

Table 5. Comparison of p-Xylene Adsorption in NU-2000 at
298 K and 3800 Pa between the Semiflexible Model of NU-
2000 Where Linker Rotation Move is Used and the Fully
Rigid Model

loading [molecule/uc] loading [mol/kg]

linker rotation 29.0 1.88
fully rigid 19.8 1.29

Figure 8. Comparison between semiflexible (a, b) and fully rigid (c,
d) framework simulations for p-xylene adsorption in NU-2000 at 298
K and 3800 Pa. Periodic boundary conditions were applied to the
snapshots to wrap all atoms into the simulation box. Red, white, gray,
cyan, yellow, and blue pseudoatoms are oxygen, hydrogen, carbon,
aluminum, carbon on the benzene ring, and methyl group,
respectively. To show the linker rotation of the framework more
clearly, in b and d, we deleted the p-xylene molecules from the
snapshots.
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high-throughput calculation (HTC) on a single graphics card,
we can assign one independent MC simulation to each block
on a GPU. Since every block contains a group of threads, these
threads can be used for parallel evaluation of pairwise
interactions and the Fourier part of the Ewald summation
for the simulation. Here, we used 128 threads per block and
ran different numbers of concurrent MC simulations to
compare the speed and test the optimal operation condition
of this type of simulation. We call this special version of the
code gRASPA-HTC. Note that this gRASPA-HTC version is
different from gRASPA or gRASPA-fast versions. gRASPA and
gRASPA-fast benefit from the use of Nvidia MPS. gRASPA
simulations using MPS are parallel processes, and each one
uses one CPU core and offloads heavy calculations to the
GPU. In this way, MPS is limited by the number of cores on
the CPU. For our case, its limit is 24 simulations
simultaneously. However, the block-based gRASPA-HTC
runs the whole GCMC simulation on the GPU. This includes
random selection of particles and moves, preparation of trial
positions, and the Metropolis algorithm for accepting or
rejecting a move. This naturally increases the throughput of
simulations beyond 24. Similar ideas have been implemented
by Kim et al.17; however, their work is not open-source, and
their simulations rely on tabulating the energy calculations,
including the Lennard-Jones, the real part and the Fourier part
of the Ewald summations.17 Our code performs real-time
calculations of pairwise interactions and Ewald summation,
aiming for higher accuracy.
We tested this HTC mode of gRASPA on an MC simulation

of bulk methane. To perform a head-to-head comparison, we
ran the HTC mode of gRASPA and a single-thread RASPA-2
simulation starting from the same initial configuration but
different random seeds with 400 methane molecules in a 30 ×
30 × 30 Å3 cubic box at 95 K. Each simulation ran for 1,000
MC cycles, and each cycle only performed translation moves.
The force field parameters are summarized in Table S14. The
speed comparison in Table 6 shows that the time required for
the simulations remains nearly constant, whether executing a
single simulation or up to 50 simulations simultaneously on a
single graphics card using gRASPA’s HTC mode. However, as
the number of concurrent simulations surpasses approximately

250−500, the graphics card becomes saturated, causing the
simulation time to increase. To show the ability of the code to
calculate isotherms, we performed a GCMC simulation of bulk
methane at 298 K in a 30 × 30 × 30 Å3 cubic box at fugacities
from 1 to 1000 bar. For the fugacities, 500 values were selected
linearly in the log10 space between 1 and 1000 bar. For
reference, we also conducted RASPA-2 GCMC simulations in
this fugacity range. The results are shown in Figure 9 and show
excellent agreement between the gRASPA-HTC code and
RASPA-2.

We also tested the performance of the HTC mode of
gRASPA versus the normal RASPA-2 for CO2 adsorption in
MFI zeolite at 298 K and 104 Pa. This simulation used
translation, rotation, and swap (insertion and deletion) moves.
Note that we did not use CBMC for this example. We used a
12.8 Å cutoff for the Lennard-Jones interactions and a 12.0 Å
cutoff for the short-range part of the Coulombic interactions.
Ewald summation was used to calculate the Fourier part of the
Coulombic interactions. We used 10−6 for the Ewald precision.
The performance is summarized in Table 7, which shows that
using the same amount of time, the methane case performed
400,000 MC steps while the CO2 case performed 40,000 steps.

Table 6. Run Times for Multiple Concurrent Simulations
Using CUDA Blocks in the HTC Mode of gRASPA for Bulk
Methane at 95 Ka

number of concurrent simulations gRASPA-HTC time [s]

1 6.00
2 6.01
5 6.01
10 6.06
20 6.04
50 6.09
100 10.52
200 15.26
250 20.20
500 35.28
1000 65.35
5000 311.43

aSystem contains 400 methane molecules, and 1000 MC cycles
(equal to 400,000 MC steps) are performed. As a comparison, the
same simulation with RASPA-2 using a single core took 6.73 s.

Figure 9. GCMC isotherms of bulk methane at 298 K simulated via
RASPA-2 (blue circles) and gRASPA using the HTC mode (red
triangles).

Table 7. Run Times for Multiple Concurrent Simulations
Using CUDA Blocks in the HTC Mode of gRASPA for CO2
Adsorption in MFI Zeolite at 298 K and 104 Pa for 40,000
MC Stepsa

number of concurrent simulations gRASPA-HTC time [s]

1 6.24
2 6.26
5 6.30
10 6.30
20 6.27
50 6.42
100 10.7
200 15.57
400 26.03
500 36.15
1000 66.71

aAs a comparison, the same simulation with RASPA-2 using a single
core took 20.81 s.
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This is because compared to running methane simulations,
CO2 adsorption in MFI simulations is more complicated and
involves Ewald summation. For the CO2 adsorption case, when
running 50 GCMC simulations concurrently, each simulation
is at least three times faster than a single-core RASPA-2
simulation. When running 500 simulations concurrently on a
single graphics card, the performance per simulation is 1.5
times slower than that of a single-core RASPA-2 simulation,
but this trade-off translates to a remarkable throughput gain of
500 times. Executing these 500 concurrent GCMC simulations
on one graphic card took 36.1 s, while executing these 500
simulations on CPUs would require at least 21 CPU chips,
assuming each is equipped with 24 cores, such as the AMD
Threadripper processor used in this study, and assuming each
RASPA-2 simulation takes one CPU core. Such an undertaking
is typically accomplished by submitting CPU jobs to a large,
centralized computing cluster. Using the HTC mode of
gRASPA, researchers with limited computational resources
(for example, just a laptop with an RTX 3090 GPU) can
explore the adsorption space as quickly as someone with access
to a large CPU cluster, expanding access to computational
materials discovery. People with access to supercomputers can
also benefit from the HTC mode of gRASPA. For example, to
screen the CoRE-MOF 2019 database79 for CO2 capture, a
mere 25 RTX 3090 GPUs, each handling 500 MOFs, are
sufficient to concurrently compute the adsorption properties of
all 14,142 MOF structures within the database, a task easily
accomplished by the multi-GPU nodes available on modern
clusters. Furthermore, the projected release of new generations
of Nvidia GPUs and technologies such as NVLink and PCIe
connections between GPUs are expected to amplify the speed
of gRASPA’s HTC mode. Despite the maximized throughput
of the HTC mode, in terms of speed of a single GCMC
simulation, it is slower and less capable than the gRASPA base
code. For the CO2 case at 298 K, 104 Pa with 40,000 MC steps
and no CBMC, the base gRASPA code takes 5 s to finish,
compared to the values in Table 7, which is 6.2 s for one
simulation. Also, the HTC mode currently only performs non-
CBMC moves, while CBMC is important for many GCMC
simulations. The user can use the HTC mode to quickly
explore materials with fewer compute resources, then refine the
calculated result using the non-HTC code.

■ CONCLUSIONS
We have developed an open-source Monte Carlo simulation
code, gRASPA, that runs on GPUs and shows substantial
speed-ups compared to serial, CPU implementations of Monte
Carlo. The utilization of Nvidia MPS significantly enhances the
throughput of gRASPA simulations on a graphics card, with
the Fast version displaying much better scalability for high-
throughput screening. The additional HTC mode of gRASPA
expands the limit of high-throughput materials discovery by
allowing users to run a large number of GCMC simulations on
a single GPU device. In addition to improved speed for MC
simulations of adsorption, the code can integrate ML force
fields for improved accuracy. We demonstrated that GCMC
simulations with ML potentials trained on DFT data show
improvements in adsorption isotherm predictions for CO2
adsorption in Mg-MOF-74 compared to classical force fields.
GC-TMMC is implemented in gRASPA for calculating free
energy profiles, which allows complete adsorption isotherms to
be obtained very quickly. The code also allows users to specify
different components of MOF structures (for example, nodes

and linkers) and to incorporate different Monte Carlo moves
for different components, which we demonstrated for
simulations of p-xylene adsorption in NU-2000 with rotation
moves for the MOF linkers.
Beyond these features, the code supports other MC

simulations, including NVT-Gibbs Monte Carlo, Widom test
particle insertions, and continuous-fractional component
(CFC) Monte Carlo, and we have demonstrated its use for
vapor−liquid equilibrium simulations. We plan to continue
adding features and enhance the performance of the code, and
since the code is open-source other users may add their own
capabilities.
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