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ABSTRACT: The microscopic pressure tensor plays an important role in
understanding the mechanical stability, transport, and high-pressure phenom-
ena of confined phases. The lack of an exact formulation to account for the
long-range Coulombic contribution to the local pressure tensor in cylindrical
geometries prevents the characterization of molecular fluids confined in
cylindrical pores. To address this problem, we first derive the local cylindrical
pressure tensor for Lennard-Jones fluids based on the Harasima (H) definition,
which is expected to be compatible with the Ewald summation method. The
test of the H-definition pressure equations in a homogeneous system shows
that the radial and azimuthal pressure have unphysical radial dependence near
the origin, while the axial pressure gives physically meaningful values. We
propose an alternative contour definition that is more appropriate for
cylindrical geometry and show that it leads to physically realistic results for
all three pressure tensor components. With this definition, the radial and
azimuthal pressures are of Irving−Kirkwood (IK) type, and the axial pressure is of Harasima type. Because of the practical interest in
the axial pressure, we develop a Harasima/Ewald (H/E) method for calculating the long-range Coulombic contribution to the local
axial pressure for rigid molecules. As an application, the axial pressure profile of water inside and outside a (20, 20) single-wall
carbon nanotube is determined. The H/E method is compared to the IK method, which assumes a spherically truncated Coulombic
potential. Detailed analysis of the pressure profile by both methods shows that the water confined in the nanotube is in a stretched
state overall in the axial direction.

1. INTRODUCTION
The microscopic pressure tensor is key to understanding the
mechanical stability of the thin films, such as lipid bilayers1,2 and
liquid film suspended in its vapor.3 It also constitutes the virial
route to the surface tension.4−7 Conjectures based on the
microscopic pressure help understand complicated phenomena,
such as phase transitions8−11 and some high-pressure chemical
reactions12,13 in highly inhomogeneous systems. Although it is
very challenging to directly measure the microscopic pressure
from experiments,13,14 it is relatively straightforward to calculate
this quantity from molecular simulations. The main difficulty
associated with the local pressure tensor calculation is the
nonuniqueness problem.15,16 For pairwise interactions, the
statistical formulation of the local pressure tensor depends on an
arbitrary integral contour connecting two interacting particles.16

This arbitrariness arises from the fact that there is no unique way
to assign part of the nonlocal pair force to a local position. One
widely used contour definition is that of Irving and Kirkwood
(IK),15,17 who defined the contour to be a straight line
connecting two interacting particles. Alternative contour
definitions are possible, a popular choice among which is the
Harasima (H) definition.4,17,18 The IK definition is naturally
compatible with the pairwise interactions (e.g., van der Waals,
Coulombic, and bonded interactions), and it can be readily

extended to more complex molecular systems with many-body
interactions (e.g., angular and dihedral) by decomposing the
potential into pairwise components. This force decomposition is
also not unique, and a number of dissection methods have been
proposed.1,19−22 For the H definition, the pressure only
attributes to the position where the atom is located. Once the
total force on an atom is known, the local pressure can be
calculated.2

Another technical problem in calculating the local pressure
tensor is how to correctly account for the long-range Coulombic
interactions. The Coulombic interaction decays very slowly in
space, and it is impossible to use a simple tail correction [as for
the Lennard-Jones (LJ) potential] to account for the missing
long-range part.23 Scientists have spherically truncated (ST) the
Coulombic potential with a large cutoff distance in the
simulation box to calculate the pressure contribution from the
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electrostatic interaction,1,22,24 but such a treatment cannot
guarantee a consistent pressure profile because the long-range
Coulombic potential was treated differently (with Ewald-based
method) in the molecular simulation and (with simple cutoff) in
the pressure calculation. Better alternatives to this simple
truncation of the Coulombic potential are the shifted-potential25

and shifted-force26 methods. In these methods, the bare
Coulombic potential is replaced by a damped one, and the
damped Coulombic potential is shifted to assure zero potential
or force at the cutoff radius to create a neutral local environment
of the central ion. Comparison with the Ewald-based method
showed that the shifted-potential and shifted-force methods
with appropriate damping parameter and cutoff radius can
effectively reproduce the energetics and dynamics of various
systems to an acceptable accuracy.25,26 Nevertheless, the Ewald
summation method27 is still the standard method to compute
long-range Coulombic interactions and to produce consistent
results.28 Hatch and Debenedetti29 achieved the consistency of
the Ewald method with the IK formulation by writing the Ewald
sum in an explicit pairwise form. However, the Ewald sum in a
pairwise form is very computationally expensive. In this case, the
H definition is a better choice and it can be readily applied to the
Ewald method in its efficient nonpairwise form (for the
reciprocal space). Alejandre et al.30 developed a formulation
that uses the IK definition for the real space and the H definition
for the reciprocal space. Later, Sonne et al.2 used the H
definition consistently in the Ewald method and extended the
method for lipid bilayers. Recently, Sega et al.31 improved the
existing method using the more efficient mesh-based Ewald
algorithm. All these developments, however, are for inhomoge-
neous systems with planar interfaces.
The statistical mechanical and computational formalism for

the local pressure tensor have been well established for
planar2,5,16,32 and spherical22,33−36 interfaces, but the theoretical
development in a cylindrical geometry is generally overlooked.
Lovett and coauthors37,38 derived the local pressure at a
cylindrical interface as the thermodynamic response to a local
deformation of the boundary, which has some similarities to the
H definition developed in Section 2.1. Their derived local
pressure, however, is in a scalar form instead of a second-order
tensor as it should be. Ten years later, Kim et al.39 studied the
properties of liquid threads and wrote out an expression for the
local normal pressure following the IK definition, but
unfortunately, they did not separate the azimuthal and axial
pressure but instead treated both components as being the same.
Recently, Addington et al.40 provided a complete derivation for
the local pressure tensor in a cylindrical geometry based on the
IK definition. The cylindrical pressure tensor is not only
important for the calculation of the surface tension of an
interface having a cylindrical geometry40 but would also help us
to understand the mechanical stability of self-assembledmicelles
of a cylindrical shape41,42 and the phase behavior and transport
inside cylindrical nanopores. Most of the synthetized porous
materials with a well-defined geometry have cylindrical or quasi-
cylindrical pores, including carbon and silicon nanotubes, silica
materials (e.g., MCM-41,43 SBA-15,44 and KIT-645,46), and
metal−organic frameworks [e.g., (Ni3(HITP)2)

47,48].
In this work, to address the problem of calculating the

microscopic pressure in the presence of the long-range
Coulombic interactions in a cylindrical geometry, we first
present, in Section 2, a derivation and a test of the local
cylindrical pressure tensor for LJ fluids based on the H
definition. This definition is expected to be compatible with

the Ewald method as shown for planar geometries.2,31 We note
that while the H definition gives physically sensible results for
the axial component of the pressure tensor for cylindrical
geometries, both the radial and azimuthal pressure tensor
components give unphysical results near the origin, as has been
noted also for spherical geometries by Hafskjold and Ikeshoji.35

As a valid alternative, we propose a new contour definition for
the local cylindrical pressure tensor which retains the form of the
radial and azimuthal pressures of the IK definition40 but has the
form of the axial pressure of the H definition. In many
applications, the axial pressure is themost important quantity for
investigating phase transitions,49,50 phase behavior of confined
materials,11 and confined chemical reactions in nanoreactors.12

The axial pressure is also necessary for calculating the fluid-wall
surface tension,51 for developing sophisticated equations of state
for confined fluids,24 and for designing efficient pressure/
temperature-driven release systems using a nanotube as a
container.52,53 Therefore, in Section 3, a molecular expression
for the local axial pressure component is derived for rigid
molecules, which preserves the consistency of the Harasima-
type axial pressure component with the Ewald summation
method in cylindrical coordinates. As an application, we
investigate the axial pressure variation of water inside and
outside a single-wall carbon nanotube (SWCNT).

2. LJ FLUIDS
2.1. Cylindrical Pressure Tensor by the Harasima

Definition. In cylindrical coordinates, (R, θ, z), if the fluid is
under the condition of hydrostatic equilibrium, ∇·P = 0, we
have40

=P P R( )N RR (1)

= = +θ θθP P R P R R
P R

R
( ) ( )

d ( )
dT N
N

(2)

=P P R( )Tz zz (3)

where PRR is the normal pressure (N) in the radial direction, PTθ
is the tangential pressure (T) in the azimuthal direction, and PTz
is the tangential pressure in the axial direction. There are two
contributions to the total pressure tensor, the kinetic
contribution, and the configurational contribution. The kinetic
contribution to the pressure tensor is well defined and is given by
PKin(R) = ρ(R) kBT1, where ρ(R) is the number density at radial
position R, kB is the Boltzmann constant,T is temperature, and 1
is the second-order unit tensor. For pairwise interactions, the
configurational (C) pressure tensor is given by17

∫∑ δ= ̃ − ̃
≠

l lP r F r( )
1
2

d ( )
i j

ij
C

C

ij (4)

where ⟨...⟩ is the ensemble average, Fij is the force vector
between the ij particle pair, and l ̃ is a path vector integrated over
the contour Cij; the prefactor 1/2 is to account for double
counting of particles. The integral contour Cij is not uniquely
defined. In the spirit of the H definition for the planar,5,18 and
later for the spherical interfaces,33,35 here we design a Harasima
integral path in a cylindrical geometry, and the path vector can
be generally written as

α γ̃ = − ̂ + ̂ + + ̂θ θ βθ+l R e R e z z e( 1) ( )ij R j R i ij z, ,i i ij (5)
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where radial distance Rij = Rj − Ri, azimuthal angle θij = θj − θi,
and z-distance zij = zj − zi. Radial unit vectors eR̂,θi, eR̂,θi+βθij, and
axial unit vector eẑ are given by

θ

θ

θ βθ

θ βθ̂ = ̂ =

+

+

̂ =
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i
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jjjjjjjjjjj

y
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e
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sin

0

cos( )

sin( )

0
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i R

i ij

i ij

z

, ,i i ij

(6)

Parameters α, β, γ range from 0 to 1. If α, β, γ vary sequentially
from 0 to 1, the path l ̃represents the contour Cij in Figure 1. The

nonsequential variation of α, β, γ will not alter the final
expressions for the cylindrical pressure tensor. For simplicity, we
will follow the case, where α, β, γ vary from 0 to 1, one by one.
Differentiation of the vector l ̃ gives a line element in cylindrical
coordinates

α θ β γ̃ = ̂ + ̂ + ̂θ θ θ βθ+l R e R e z ed d d dij R j ij ij z, ,i i ij (7)

where the azimuthal unit vector eθ̂,θi+βθij is

θ βθ

θ βθ̂ =

− +

+θ θ βθ+

i

k

jjjjjjjjjjjjj

y

{

zzzzzzzzzzzzz
e

sin( )

cos( )

0

i ij

i ij, i ij

(8)

We note that unlike the constant unit vectors in the Cartesian
coordinate system, the radial and azimuthal unit vectors in
cylindrical coordinates depend on the azimuthal angle θ. The
delta function in eq 4 can be rewritten in a cylindrical form by

δ δ δ θ θ δ− ̃ = − − −l
R

R R z zr( )
1

( ) ( ) ( )l l l (9)

where Rl = Ri + αRij (α ∈ [0,1], β = γ = 0), θl = θi + βθij (β ∈
[0,1], α = 1, γ = 0), and zl = zi + γzij (γ ∈ [0,1], α = β = 1)
according to the designed contour. Using eq 9, we can rewrite eq
4 as

∫∑ δ δ θ θ

δ

= ̃ − −

× −

≠ r R
f l R R

z z

P r
r

( )
1
2

1
d ( ) ( )

( )

i j

ij

ij
ij C

l l

l

C

ij

(10)

where vector rij = rj − ri, rij is the scalar distance between the ij−
pair, and f ij is the ij−pair force for isotropic interactions.
We assume a cylinder having a height of L, and the cylinder

height is related to the simulation box length Lz in the z-
direction by L = kLz, where k∈ (0,1]. Starting from eqs 7 and 10,
the diagonal elements of the second-order cylindrical pressure
tensor can be determined with the result

∑ρ
π

θ α

α

= + +
| |

× −

<
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R

r L
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∑ρ
π
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×
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P R R k T

R
R R R R

z

r L
f
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1

4
( ) ( )zz

i j
j i

ij

ij
ij

B

2

(13)

whereH(x) is the Heaviside step function (x ≥ 0,H(x) = 1; x <
0, H(x) = 0), α1=(R − Ri)/Rij for a given constant R-surface.
Equation 13 is consistent with the eq 2.13 withUij = zij

2 in ref 38.
A full derivation of eqs 11−13 is available in Section S1,
Supporting Information. In practice, the delta function in the
abovementioned equations can be approximated as

δ
ξ

ξ ξ− = [ − − ] [ + − ]
ξ→

x a H x a H a x( ) lim
1

( /2) ( /2)
0

(14)

If we let x = R, ξ = 2Δ, and a = Rj, eq 14 is equivalent to

δ − =
Δ

− + Δ + Δ −
Δ→

R R H R R H R R( ) lim
1

2
( ) ( )j j j

0
(15)

Replacing the delta functions in eqs 12 and 13 with the
transformation in eq 15 will lead to expressions suitable for
computer simulations.

2.2. Simulation details. We tested the cylindrical pressure
tensor equations (eqs 11−13) in a bulk LJ fluid. The system was
chosen to be LJ argon in its liquid state at T = 100 K and P = 100
bar. The molecular interactions were modeled by the 12-6 LJ
potential

Figure 1. Harasima contour in cylindrical coordinates. The scheme is
plotted in (a) a 3D view and (b) a top view (looking into the axial z-
direction). The contour Cij (in red) is composed of three separate
paths: first, starting from particle i, (Ri, θi, zi), to (Rj, θi, zi), then to (Rj,
θj, zi), and eventually to the position of particle j, (Rj, θj, zj). Particle i
and particle j are indistinguishable; so, there is an equivalent contour Cji
(in blue) starting from particle j. The final pressure expression is the
average from both contours.
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where r is the intermolecular distance; σ and ε are the molecular
diameter and potential well depth, respectively, and were chosen
to be σ = 3.405 Å and ε/kB = 119.8 K. Molecular dynamics
(MD) was implemented tomodel the system in the isothermal−
isobaric (NPT) ensemble. The system contained N = 4000 LJ
particles and had a box dimension of Lx = Ly∼ 23σ, Lz∼ 9σ. The
box size was allowed to fluctuate during the simulation. ANose−́
Hoover-style thermostat/barostat was applied to maintain the
imposed temperature and the pressure of the system. The
temperature damping time and the pressure damping time were
set to 0.2 and 2 ps, respectively. Periodic boundary conditions
were applied in all directions. The system was integrated using
the velocity Verlet algorithm. All simulations in this work were
carried out using the LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator, version 12 Dec 2018).54

To facilitate the simulation, the intermolecular potential was
ST at the cutoff radius of rc = 3σ

=
≤

>

l
m
ooo
n
ooo

u r
u r r r

r r
( )

( )

0
ST

LJ
c

c (17)

where the potential is discontinuous at the cutoff radius; such an
abrupt change in the potential value at rc leads to an
intermolecular force with an impulsive contribution at the
cutoff radius23,55−58

δ
=

− + − ≤

>

l
m
ooooo

n
ooooo

f r
u r

r
u r r r r
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( )
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d

( )

0

LJ

c c c

c (18)

where the term ucδ(r − rc) represents the impulsive force
because of the discontinuity of the potential at rc and uc = u

LJ(rc).
Because the delta function in eq 18 is usually difficult to handle
in the MD algorithm, most MD packages (including the
LAMMPS used here) discard the impulsive force term, and the
actual force evaluated during the simulation is

=
− ≤

>

l
m
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n
ooooo

f r
u r

r
r r

r r
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d
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which essentially corresponds to the spherical truncated and
shifted (STS) potential model55

=
− ≤

>

l
m
ooo
n
ooo

u r
u r u r r

r r
( )

( )

0
STS

LJ
c c

c (20)

Therefore, the pair force f ij in the pressure tensor expressions
should be evaluated using eq 19 in the MD and we use eq 19 for
the force calculations in this paper unless otherwise stated. As for
the Monte Carlo (MC) simulation, no force evaluation is
required. If the ST potential model is used in theMC simulation,
the pair forces f ij in the pressure tensor equations must be
calculated by eq 18 and the impulsive force term should by no
means be neglected. We observed that the failure of including
the impulsive term in eq 18 when using the ST potential at rc =
3σ in a MC NPT simulation leads to a calculated pressure value
of about 190 bar, compared to an imposed bulk pressure of 100
bar (almost 100% deviation).

We put the cylindrical coordinate system at the center of the
simulation box, and the system was binned into cylindrical shells
with the same radial thickness of about 0.01σ. When evaluating
the delta function, the parameterΔ in eq 15 is chosen to be half
of the cylindrical shell thickness, that is, 2Δ ≈ 0.01σ. The
simulation was performed for 20 ns with a timestep of 2 fs. The
pressure tensor calculations were performed over the last 80,000
configurations.

2.3. Results and Discussion. In Figure 2 we show three
diagonal components, PRR, Pθθ, and Pzz, in a bulk liquid LJ

system. The radial pressure, PRR, and the azimuthal pressure, Pθθ,
exhibit an unphysical radial dependence near the origin, while
the axial pressure, Pzz, is a constant (within statistical errors),
matching the imposed pressure (P = 100 bar) in the simulation.
The anomalous behavior of the radial pressure near the origin is
expected by examining eq 11. If we attempt to evaluate the
configurational contribution (second term on the right of eq 11)
of the radial pressure between a particle i at the center (Ri = 0)
and a surrounding particle j at the radial position of Rj (Rj > 0),
because of the cylindrical symmetry, we would expect that the ij-
pair’s contribution to PRR is independent of the angle θij.
However, eq 11 shows dependence on θij through the term (1 +
cos θij), indicating that some of the particles j at Rj contribute
strongly to the radial pressure (when θij → 0) and some of them
contribute only weakly (when θij → π); this is not rational on
physical grounds. For the azimuthal pressure, we notice that the
major difference between eq 12 and the (correct) eq 13 for the
axial pressure is the presence of the radial distance Ri and Rj in
front of the delta functions in eq 12. When a particle i is close to
(or at) the center of the cylinder (i.e., Ri → 0), eq 12 predicts a
small (or zero) configurational contribution to the azimuthal
pressure. This is confirmed by the fact that as R → 0, both PRR
and Pθθ approximate the kinetic contribution to the pressure,
ρkBT. When R ≫ 0, both PRR and Pθθ converge to the imposed
pressure in the simulation.

Figure 2. Radial profile of diagonal elements of the cylindrical pressure
tensor by the Harasima definition in homogeneous liquid argon. The
liquid was simulated in the isothermal−isobaric ensemble at T = 100 K
and P = 100 bar. The radial (PRR) and azimuthal (Pθθ) components of
the pressure tensor exhibit unphysical dependence on the radial
distance near R = 0, but the axial component (Pzz) is a constant, as it
should be. Pθθ,calc was calculated from the hydrostatic equilibrium, that
is, eq 2; the agreement between the simulation results and the
calculated values confirms the consistency in our implementation.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00607
J. Chem. Theory Comput. 2020, 16, 5548−5561

5551

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00607?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00607?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00607?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00607?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00607?ref=pdf


Such unphysical radial dependence of the pressure in a bulk
phase is because of a poor construction of the integral contour in
polar coordinates. Similar to our case, unphysical radial
dependence near the origin has also been observed for the
local spherical pressure tensor using the H definition in a
homogeneous hard-sphere fluid35 and in LJ liquid droplets.33

The local cylindrical pressure tensor following the IK definition
was found to reflect the true pressure in homogeneous bulk
fluids.40 This is because the IK contour is defined as a straight
line connecting two molecules, the construction of which is not
associated with the polar coordinates (radial distance and polar
angles). It should be noted that the singularity at the polar origin
(R = 0) might be inevitable. It has been argued that the IK
definition also suffers this abnormality at R = 0 in spherical
coordinates.59 Excluding the point at R = 0, the IK definition is
preferred to the H definition in polar coordinates. However,
from the preference for the IK contour, it should not be
concluded that the IK definition of the local pressure tensor is
uniquely correct in polar coordinates. Any construction of the
integral contour that does not depend on the polar coordinates
should be expected to be equally valid, as is the IK definition.
2.4. Alternative Pressure Definition for Cylindrical

Geometry. In Figure 3, we propose an alternative contour for

cylindrical geometry, which avoids the singularity near the origin
of the H definition, while combining desirable features of both
the IK and H definitions. The new contour vector is

α α β̃ = − ̂ + ̂ + + ̂θ θl R e R e z z e(1 ) ( )i R j R i ij z, ,i j (21)

where parameters α and β vary sequentially from 0 to 1. The
diagonal elements of the local cylindrical pressure tensor for this
new contour are (see Section S2, Supporting Information, for
derivation)
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Equations 22 and 23 for the radial and azimuthal pressure
components are equivalent to those of the IK definition40 and so
are well behaved. Most importantly, the result for the axial
pressure, eq 24, is the same as the expression for this pressure
component with the H definition (eq 13) and so is consistent
with the Ewald summation method for long-range forces as
shown in the next section. In eqs 22 and 23, αk is the root of the
equation R2 = (xi + αxij)

2 + (yi + αyij)
2 and the unit vectors at α =

αk are given by
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(25)

We note that eq 23 has a different appearance than that in ref 40.
Unlike the method in ref 40 that requires to take an average over
a number of θ values in computation, here, we have already
averaged over all possible θ analytically through integration (see
eq S11). In the following sections, we focus on the axial pressure
component because of the practical interest and extend eq 24 to
complex systems of rigid molecules interacting with long-range
Coulombic potential.

3. MOLECULAR FLUIDS
For a bulk fluid, the configurational part of the pressure tensor
can be calculated by the virial theorem60

∑= α β
αβVP r f

i
i i

C

(26)

where V is the volume of the system, Pαβ
C is the pressure tensor

component representing the force per unit area in the β-
direction acting on a surface element normal to the α-direction;
ri
α is the position of particle i in the α-direction, and f i

β is the total
force exerted on particle i in the β-direction. Equation 26 is the
most general form of calculating the configurational contribu-
tion to the bulk (i.e., spatially averaged) pressure tensor of the
system, and it is the so-called atomic representation of the
pressure tensor.61,62 Equation 26 involves the net force on each
atom arising from all interaction potentials, including pairwise
interactions (e.g., bonded and nonbonded), three-body
interactions (e.g., angle-bending), four-body interactions (e.g.,
dihedral and improper) and higher-body interactions. The
constraint force, imposed by the SHAKE algorithm,63 for
example, should also be included in the force calculations.1,62

The derivation of the local version for the atomic pressure tensor

Figure 3. Alternative valid construction of the integral contour for the
local pressure tensor in cylindrical coordinates. The scheme is plotted in
(a) a 3D view and (b) a top view. The contour Cij (in red) is composed
of two separate paths: first starting from particle i (gray), (Ri, θi, zi),
horizontally to (Rj, θj, zi), and then vertically to the position of particle j
(green), (Rj, θj, zj); the second path is the same as the final path of the
Harasima contour defined in Figure 1. Because particle i and particle j
are indistinguishable, the contour Cji (blue line in the 3D view) is
equivalent to Cij (Cji is not plotted in top view for clarity).
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is straightforward, depending on the criteria to dissect the force
in space.19−21 An alternative is the molecular representation of
the pressure tensor.61,62 The molecular pressure tensor takes the
molecule as a whole, and no intramolecular contribution to the
pressure is accounted for. This molecular representation is
particularly suitable for rigid molecules and avoids calculating
virial contributions from rigid constraints. The molecular
pressure tensor has been applied to study the surface tension
and pressure profile across the vapor−liquid interface.30,64

3.1. Local Axial Pressure with ST Coulombic Inter-
actions. For rigid molecules interacting with the ST LJ and
Columbic potentials, the molecular representation of eq 4 is
given by

∫∑ ∑ ∑ δ= ̃ − ̃
≠

l lP r F r( )
1
2

d ( )
i j a b

iajb
C

C

ij (27)

where Fiajb is the force vector between atom a in molecule i and
atom b in molecule j and Cij now is defined as an arbitrary
contour connecting the center of mass (COM) of two
interacting molecules. For the IK definition, the contour is a
straight line, l ̃= ri + αrij with α ∈ [0,1], and the configurational
contribution to the local axial pressure is given by
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where ziajb = zjb − zia; riajb and f iajb are the scalar distance and
force between the atom a in molecule i and the atom b in
molecule j, respectively; αk is the root of R

2 = (xi + αxij)
2 + (yi +

αyij)
2 at a given R-surface; the radial unit vector eR̂,αk

at α = αk is
given by
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It is assumed in Equation 28 that two interacting molecules
are both within the defined cylinder of height L. In cases where
part of the straight-line contour is inside the defined cylinder, the
valid solutions are those for zl(αk) inside the defined cylinder.
For the Harasima-type axial pressure component (Figure 3), the
molecular version of the configurational part in eq 24 is given by
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3.2. Local Axial Pressure with Ewald Summation
Method. The calculation of the bulk pressure tensor with the
Ewald summation method27 is well established in the field.61,65

The total electrostatic energy can be written by the Ewald
summation method66 as
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(31)

where ε0 is the permittivity of vacuum; κ is the damping
parameter, the introduction of which assures the convergence of
the Coulombic energy in the real space; erfc(x) is the
complementary error function and erfc(x) = 1 − erf(x). The
box volume is V = LxLyLz, and the reciprocal space (i.e., Fourier
space) vector h is defined as h = (2πnx/Lx,2πny/Ly,2πnz/Lz) with
nx, ny, and nz taking integer values. The structure factor is given
by

∑ ∑= ·S q ih h r( ) exp( )
j b

jb jb
(32)

The first term on the right of eq 31 accounts for the real space
contribution, the second on the right is the contribution from
the reciprocal space, the third term corrects the spurious self-
interaction in the reciprocal space, and the fourth term corrects
the intramolecular energy for small rigid molecules. The last
term on the right of eq 31 is the surface term67 which accounts
for the dipole moment on the sphere of box replicas that is
embedded in a surrounding medium with relative permittivity
(dielectric constant) of εs.

66 If εs =∞, as is assumed in the Ewald
method and was applied throughout in the current work, the
surface term vanishes, and this is called the conducting (“tin-
foil”) boundary condition. If there is no surroundingmedium (εs
= 1, vacuum) as is the case for the direct lattice sum, the surface
term cannot be simply neglected (see example in Appendix A in
ref 29). It is clear from eq 31 that writing the energy in the
reciprocal space in a pairwise form is very inefficient. Instead, we
write out the electrostatic energy for molecule i in the reciprocal
space (K) with the self-correction term as
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(33)

where the function Re(x) extracts the real part of a complex
number. We note that eq 33 contains the intramolecular
interactions in the reciprocal space.
Once having the potential energy, to derive the molecular

pressure tensor, it would be convenient to start from the
thermodynamic definition of the pressure. In a canonical
ensemble for example, the bulk (scalar) pressure is defined as
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zzzP
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where A is the Helmholtz free energy. By substituting A = −kBT
ln Q into eq 34, where Q is the total partition function of the
system, and after simple manipulations, we have

ρ= − ∂
∂

P k T
U
V N T

B
, (35)

where U is the total configurational energy of the system. If we
approximate the partial derivative in eq 35 by a finite volume
expansion, we obtain the thermodynamic route (also known as
the volume perturbation method) to the pressure.57,68,69

Equation 35 is exact, and we can directly extend it to the
calculation of the local pressure tensor. For a cylinder with
height L in the axial direction, we can divide the cylinder into
several shells with equal radial thickness of 2Δ, where Δ is a
finite number but is small enough and is near zero. Based on eq
35, the local axial pressure in the cylindrical shell located at R is
given by
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1

4
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where ρ(R) is the molecular density profile; U(R) is the
potential energy in the cylindrical slab at a radial distance of R.
Different criteria of assigning potential energy in slabs will lead
to different local pressure values,70 again suggesting that there is
no unique definition of the local pressure tensor. Here, we adopt
the choice of Ladd and Woodcock71 and only assign the
potential energy into the slab if any one of the interacting
molecules involved is in that slab; this choice corresponds to the
Harasima-type axial pressure component in the new contour
definition in Figure 3.
Having selected the criterion to assign the local potential

energy, the total potential energy in a cylindrical shell is given by

= + + +U R U R U R U R U R( ) ( ) ( ) ( ) ( )LJ R K intra (37)

where the LJ potential is
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the electrostatic potential in the real space (R) is
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the electrostatic potential in the reciprocal space (K) is
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and the last term correcting the electrostatic intramolecular
interactions is
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Now, substituting eqs 37 into 36 results in
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The LJ pressure component, Pzz,H
LJ (R), takes the same form as eq

30. It is easy to see that ∂Uintra(R)/∂L = 0 for rigidmolecules, and
thus, Pzz,H

intra(R) = 0. Substituting eqs 39 into 42 gives the local axial
pressure because of the electrostatic interactions in the real
space
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where in the last step, we used eq 15 to convert the Heaviside
step functions to the delta function. While carrying out the
partial derivative of ∂riajb/∂Lz, we note that the scaled COM
distance, sij = zij/Lz, and the intramolecular distance, dia = ria− ri,
are both invariant to the volume scaling. Combining eqs 33, 40,
and 42 yields the equation for the local axial pressure coming
from the reciprocal space
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and

∑ ∑= ·Q q d ih h r( ) exp( )
j b

jb jb z jb,
(46)
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In eq 45, hz = 2πnz/Lz and the intramolecular distance dia,z = zia
− zi. Averaging the summation of eqs 43 and 44 over the defined
cylinder geometry having a radius of Rc, that is,

∫̅ = [ + ]P P r P r r r R2 ( ) ( ) d /zz
R

zz zz0 ,H
R

,H
K

c
2c , leads to the Cou-

lombic component of the bulk (spatially averaged) axial pressure
expression that is in agreement with eq A10 in ref 30. However,
in ref 30, the authors distributed the reciprocal space
contribution equally to each molecule, which is an unjustified
assumption for highly inhomogeneous systems.31 The above
derivation of the reciprocal space contribution to the local axial
pressure is similar to the scenario for planar geometry. In that
case, following the H definition, the reciprocal-space pressure
contribution frommolecule/atom i can be explicitly derived and
it is assigned to the planar slab where the molecule/atom is
located.2 Equation 42 and its contributing parts (eqs 30, 43, and
44) constitute the Harasima/Ewald (H/E) method for the local
axial pressure in a cylindrical geometry.
3.3. Simulation Details. We first tested our molecular

pressure equations in a bulk system with 2500 water molecules
at T = 300 K and P = 100 bar in the NPT ensemble. The water
model was chosen to be the rigid SPC/E model72 with the
SHAKE algorithm63 applied for bond and angle constraints. A
Nose−Hoover-style thermostat/barostat was applied with the
temperature damping time and the pressure damping time of 0.1
and 1 ps, respectively. Periodic boundary conditions were
applied in all directions. To calculate the pressure tensor under
periodic boundary conditions, the particle−particle interaction
in the central box (unit cell) and the particle−image interaction
across the box boundary should both be accounted for.73 Figure
4 illustrates the rules of accounting for the particle−image
interactions in the pressure calculation by both IK and H
definition. The cutoff radius for the LJ interactions was set to 10
Å. The long-range electrostatic interactions were handled by the
particle−particle particle−mesh method.66,74 The damped
Coulombic interaction in the real space was cut off at 10 Å
with a damping parameter κ of 0.3077 Å−1. The grid size in the
reciprocal space was adjusted during the simulation based on the
instantaneous box dimensions, damping parameter, and
computation accuracy (absolute accuracy was set to 10−5 eV/
Å). The cylindrical sampling region was divided into cylindrical
shells with thickness of 0.05 Å. The systemwas equilibrated for 2
ns with a timestep of 1 fs, and the local axial pressure was post-
calculated over 1.2 × 106 configurations from the subsequent 60
ns production run.

Once validated, the developed molecular pressure equations
are used to calculate the axial pressure profile for SPC/E water
inside and outside a (20, 20) SWCNT. The SWCNT is a 6 nm-
long tube with a diameter of 2.712 nm, having the “armchair”
configuration. The nanotube was kept rigid during the
simulation by setting the net force on each carbon atom to
zero. The center of the SWCNT was fixed at the center of the
simulation box, and the axial direction was aligned with the z-
axis of the box. The carbon atoms (C) in the SWCNT were
assumed to be neutral and interact only with the oxygen atom
(O) in the water molecule through the 12-6 LJ potential. The
carbon−oxygen LJ parameters were taken from Werder et al.,75

that is, εCO/kB = 47.147 K and σCO = 3.19 Å. LJ and Coulombic
interactions were handled in the same way as in the bulk water
simulations. At the beginning, an empty nanotube was placed in
a water bath having 11,000 water molecules under periodic
boundary conditions. AnNVT runwas first performed for 100 ps
to gradually heat the system up to 300 K, and an equilibrium
NPT run was immediately followed for another 2 ns with a
timestep of 1 fs. The temperature and the (hydrostatic) pressure
of the system were kept at 300 K and 1 atm, respectively. Only
the center-of-mass positions of the water molecules were scaled
during the NPT run. The water filled the initially empty
SWCNT within 1 ns, consistent with the previous observa-
tions.76 An equilibrated configuration of the system is shown in
Figure 5. The local axial pressure was post-calculated over 1.6 ×
106 configurations from the subsequent 40 ns production run.
The pressure sampling was only performed at the middle of the

Figure 4. Illustration of the local axial pressure calculations in a cylindrical geometry under periodic boundary conditions. The axial direction of the
cylinder is perpendicular to the xy plane. In the central box, the red dash-dotted line indicates the boundary of the thin cylindrical shell located at R5, for
example. For the IK definition, the A−C interaction contributes twice to the local axial pressure at R5 and once at R4; the B−D interaction contributes
only once to the local axial pressure at R5. For the Harasima (H) definition, the A−C interaction contributes half to the local axial pressure in the
cylindrical shell located at R5 and half to the shell at R4; the B−D interaction only contributes half to the shell at R5 because the particle (or center of
mass of the molecule) B is outside the sampling region (0 ≤ Rsample ≤ R5 + Δ) where the pressure will be calculated.

Figure 5. Typical simulation snapshot for a (20, 20) SWCNT
submerged in a water bath after equilibrium. The water molecules
outside the SWCNT are not shown for clarity.
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SWCNT, and the pore edge effect is negligible. The source code
for pressure analysis is available at https://github.com/
KaihangShi/Cylindrical-Pressure-Tensor.
3.4. Results andDiscussion. 3.4.1. BulkWater.To validate

our H/E implementation, we calculated the local axial pressure
in a bulk water system assuming a cylindrical geometry. As a
result, the H/E method leads to an axial pressure profile that
fluctuates around the imposed pressure in the NPT simulation
across the whole system (see Figure 6). In addition to the H/E

method, the IK method (e.g., eq 28 for the configurational
contribution) was also used to evaluate the local axial pressure,
assuming the Coulombic interaction is simply truncated in the
simulation box. The IK method, however, yields axial pressure
profiles that depend on the Coulombic cutoff distance (see
Figure 6). The averages of the local data shown in Figure 6 are
summarized in Table 1. In general, the new H/E method can
reproduce the bulk pressure controlled by the barostat (i.e., P =
100 bar). For the IK method with Coulombic interactions cutoff
at relec = 10 Å, the averaged pressure is not even close to the
imposed bulk pressure and is a negative value. When we increase

the Coulombic cutoff radius up to 18 Å, which is limited by the
box dimension, the averaged bulk pressure by the IK method
shows a nonmonotonic trend that slowly converges to the
imposed bulk pressure. We expect that the IK result will
eventually agree with the H/E result if the cutoff radius is large
enough (providing the simulation box is also large enough) so
that the Coulombic energy can converge within the unit cell.
The results in Table 1 support the conclusion that the H/E
method is preferred, and it gives a reliable pressure value that
reflects the true state of a homogeneous system or of a
homogeneous region in an inhomogeneous system (see Section
3.4.2). This preference does not imply that the H/E method is
more correct than the IK method with the pairwise Ewald sum
or with the direct lattice sum,29 but the H/E method clearly has
advantages in its computational efficiency.
To better understand each contributing part in the H/E

method, we decompose the total pressure into the kinetic, short-
range, and reciprocal-space contributions in Table 2. The short-

range part includes both the LJ and the real-space-damped
Coulombic interactions. When the damped Coulombic
interaction is truncated in real space at 10 Å, the contribution
from the reciprocal space accounts for∼24% with respect to the
total pressure. If we keep the computational accuracy of the
Ewald method the same and take a longer Coulombic cutoff in
the real space, relec = 18 Å (with κ = 0.17094 Å−1), the
contribution from the reciprocal space now only accounts for
∼1%. This is a consequence of how we split the Coulombic
energy in the Ewald method.2 In the latter case, the real-space
contribution plays a major role in the total Coulombic energy
and the systematic error introduced by replacing the bare
Coulombic potential with a damped one is small.25

3.4.2. Water Confined in a (20, 20) SWCNT. Here, we
illustrate an application of the new H/E method in investigating
the axial pressure profile of water inside and outside a (20, 20)
SWCNT, having an internal radius of 1.356 nm. For the pressure
contributions from fluid−wall (fw) interactions, the atomic
representation of the pressure tensor has been adopted because
defining a COMposition for a solidmaterial is usually insensible,
especially when such solid is modeled as an “infinitely” large one
under the periodic boundary conditions.62 The fw contribution
to the local axial pressure by the IK and by the H definition is
given by

Figure 6. Radial profile of the local axial pressure by the IK method and
by the H/Emethod in bulk water. The liquid water was simulated in the
isothermal−isobaric (NPT) ensemble at T = 300 K and P = 100 bar.
Because the IK method assumes a ST Coulombic potential in the box,
the resulting pressure profiles are dependent on the cutoff distance. The
axial pressure calculated by the H/E method fluctuates around the
imposedNPT pressure (P = 100 bar, black dashed line), confirming the
consistency in our H/E implementation.

Table 1. Averaged Axial Pressure in Bulk Water Simulated in
the Isothermal−Isobaric Ensemble at T = 300 K and P = 100
bara

method relec (Å) Pzz (bar)

H/E 10 100.8 ± 11.4
IK 10 −388.3 ± 18.5

12 −6.7 ± 18.0
14 125.4 ± 21.5
16 120.9 ± 16.5
18 113.9 ± 17.6

aThe IK method, assuming the Coulombic interactions are simply
truncated at a distance (relec), is compared with the accurate H/E
method. The pressure values presented here are composed of the
average of the local axial pressure and the standard error. For better
statistics, the average was carried out for R ≥ 5 Å in Figure 6.

Table 2. Decomposition of the Total Axial Pressure of the
Bulk Water by the H/E Method into the Kinetic Part (PKin),
Short-range Part (Pzz,H

LJ + Pzz,H
R ), and the Reciprocal-space

Part (Pzz,H
K )a

relec
(Å) PKin (bar) Pzz,H

LJ + Pzz,H
R (bar) Pzz,H

K (bar) Pzz (bar)

10 1374.7 ± 1.2 −1249.9 ± 10.7 −24.0 ± 2.2 100.8 ± 11.4
18 1374.3 ± 1.8 −1272.7 ± 16.3 −1.1 ± 1.3 100.6 ± 16.5

aThe bulk system was simulated in the isothermal−isobaric ensemble
at T = 300 K and P = 100 bar. The damped Coulombic interaction in
the real space is cut off at two different values (relec), but the overall
Ewald accuracy is kept the same and is consistent with the simulation
setup. The pressure values are composed of the average of the local
axial pressure and the standard error. For better statistics, the average
was carried out for R ≥ 5 Å.
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where the summation is over all water molecules i and atoms a
inside the water molecule and over all carbon atoms b in the
modeled SWCNT. Equation 28 is similar to eq 47 here with the
subscript jb (or j) replaced by b; the distance zib = zb− zi and ziab
= zb − zia. To derive eqs 47 and 48, we realize that the carbon
atoms in the SWCNT are scaled with the volume transformation
in the axial direction (see Appendix in ref 62). In this case, the
intramolecular carbon−carbon (wall−wall) interactions (e.g.,
bonded and angle) will contribute to the local pressure tensor.
Because we simply kept the nanotube rigid in this work, the
wall−wall contribution to the local axial pressure is not
considered here.
The local axial pressure and density of water inside and

outside the SWCNT is shown in Figure 7. The axial pressure
profile by the H/E method is compared with those by the IK
method at two different Coulombic cutoff radii, relec = 15 and 25
Å. Increasing the cutoff distance from 15 to 25 Å does not make
visually significant changes to the whole IK axial pressure profile,
but it is discernible that the bulk pressure outside the nanotube is

slowly converged to the exact value by the H/E method. The
true bulk pressure simulated outside the nanotube is about 30
bar higher than the imposed pressure (1 atm) in the NPT
simulation. This is because the current NPT algorithm was
designed to control the hydrostatic pressure (one-third of the
trace of the pressure tensor) of a homogeneous system. In other
words, this algorithm maintains the hydrostatic pressure of the
whole system and has no control over the pressure in a specific
region of an inhomogeneous system (e.g., the bulk region
outside the SWCNT). In general, we observed only a minor
confinement effect on the pressure profile because of the large
diameter of the nanotube. The axial pressure profile inside the
nanotube is very similar to that outside for both methods and we
expect bigger differences between the pressure profile inside and
outside as the tube diameter decreases. For the pressure profile
by the H/E method, the axial pressure is negative overall and
presents negative peaks at the peak positions in the density
profile (see Figure 7, bottom panel). The local axial pressure in
the first and the second water layer (near the wall) inside the
nanotube dips to about−4100 and−1100 bar, respectively. The
negative pressure pulse at R = 13.56 Å (the radial position of the
nanotube wall, see Figure 7, upper panel) is because the
attractive forces between water molecules and the nanotube
wall, and the H definition assigns the pressure to the position of
the wall atoms. The IK pressure profile, unlike that by the H/E
method, is in phase with the density profile, presenting enhanced
pressure peaks at the position of the water layers (as high as 2800
bar) and pressure drops (as low as −2400 bar) between two
layers. Because the IK definition assigns the force in space
between the two interacting molecules, there is no negative
pressure pulse at the position of the nanotube wall. We have also
calculated the axial pressure profile by the H definition with the
Coulombic potential treated in the same way as in the IK
method (i.e., ST Coulombic potential at relec = 25 Å). We found
that the axial pressure profile by the H definition is almost
identical to that by the H/E method (data not shown),
indicating that the significant difference in results between the
IK andH/Emethod as shown in Figure 7 should be attributed to
the difference in contour definitions for the local pressure,
instead of the different ways to treat the Coulombic interactions.
It is worth noting that neither the H/E nor the IK pressure
profile resembles the results reported by Barati Farimani and
Aluru.77 The authors77 reported a “local pressure” of 1000 bar
near the center of a (20, 20) carbon nanotube at room
temperature and pressure. This pressure is suspected because
the authors incorrectly used the virial equation for the scalar
pressure to calculate the local pressure tensor in an
inhomogeneous phase. A similar mistake was alsomade in ref 78.
To better understand the intermolecular interactions behind

the pressure profiles, the total pressure is decomposed into the
fluid−fluid (including kinetic contribution) and fw contribu-
tions in Figure 8. For both the H/E and IK methods, the fluid−
fluid pressure profile shows a positive peak in the first water layer
near the nanotube wall, and the pressure peak by the IK method
is sharper and higher than that of the H/Emethod. This positive
pressure peak is because of the accumulation of the water
molecules near the wall. The attractive force field provided by
the carbonwall pulls the water molecules toward the wall and the
crowded environment in the first adsorbed layer leads to the
compression between the water molecules. The decomposition
of the fluid−fluid pressure profile into each contributing force
reveals that the pressure enhancement in the first layer results
from the kinetic energy and LJ overlaps. We note that the

Figure 7. Upper panel: a cross-sectional snapshot of water inside and
outside of a (20, 20) SWCNT. Bottom panel: local axial pressure
(including both fluid−fluid and fw contributions) vs the radial distance
from the center of the SWCNT. The H/Emethod is compared with the
IK method at two different Coulombic cutoff radii. These two IK
profiles are almost indistinguishable in the region of R ∈ (5, 20). The
molecular density profile of water is also plotted. The shaded area in the
pressure profile denotes the standard error. The upper-panel snapshot
is plotted in the same radial length scale as in the bottom-panel pressure
profile.
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pressure enhancement in this case is much smaller than the
tangential pressure of the argon-adsorbed layer on a carbon
surface;40,79−82 this is because argon has stronger wetting
behavior than water with carbon. Moreover, a negative fluid−
fluid pressure peak is observed in the second adsorbed water
layer in the H/E scenario, indicating that the second water layer
experiences the strong attractive interactions. In the IK scenario,
because the force is assigned in the space between the interacting
pair, the prominent negative peak is observed between the first
and the second water layer, implying that the two layers are in
tension. This negative pressure is mainly because of the
electrostatic attraction from the first adsorbed water layer (the
fluid−fluid LJ contribution to the pressure is always positive in
the water phase). A negative tangential pressure having a similar
order of magnitude was also found in water confined by two
parallel hydrophobic walls.8 However, the pressure reported in
ref 8 was the averaged pressure over the whole pore, and it is not
clear if the fw contribution was accounted for. Two small
negative peaks are also observed in the fluid−fluid axial pressure
profile in the vicinity of the nanotube wall by the H/E method,
suggesting the water molecules inside the nanotube weakly
attract the water molecules outside. This observation is
consistent with the fluid−fluid pressure profile by the IK
method, where a slightly negative pressure is present at the radial
distance from 11 to 16 Å. If the fluid−fluid contribution to the
local axial pressure in Figure 8 is spatially averaged over the
entire cylindrical pore, we will have a very similar in-pore
pressure for both the H/E method (∼−36 bar) and the IK
method (∼−33 bar), where the small differences in value might
be a result of the insufficient cutoff radius used for the
Coulombic potential in the IK method. This negative in-pore
pressure indicates that the confined water is in a stretched state

overall in the axial direction. In addition to the fluid−fluid
contributions, both H/E and IK methods lead to a negative fw
axial pressure profile inside and outside the nanotube because of
the attractive potential field exerted by the carbon wall. The fw
pressure profile gradually decays to zero near the pore center and
toward the bulk, following the decaying behavior of the
attractive external potential exerted on the water molecules by
the carbon wall.

4. CONCLUSIONS
The long-range Coulombic contribution to the local pressure
tensor is essential to the understanding of the physical properties
of complex systems. Past efforts have incorporated the Ewald
summation method into the calculation of the long-range
contribution to the local pressure in inhomogeneous systems
having planar interfaces,2,30,31 but no efficient formulation has
been proposed for cylindrical geometries so far. To achieve this
goal, we have first proposed the Harasima (H) definition for the
local pressure tensor in a system having a cylindrical interface
based on the original H definition for planar geometry5,18 and on
the later development in spherical coordinates.33,35 We chose
the H definition here because it has been proven compatible
with the Ewald sum in an efficient nonpairwise form for systems
of planar geometry.2,31 The equations for diagonal elements of
the cylindrical pressure tensor have been derived for LJ spheres
and were tested in a homogeneous LJ system. Similar to the
situation in spherical coordinates,35 the calculated pressure
profile shows that the radial and azimuthal pressure components
have unphysical radial dependence near the origin, while only
the axial pressure gives a physically meaningful value, in
agreement with the imposed pressure in the isothermal−
isobaric MD simulation. The results confirm that, in general, the
H definition is not appropriate in cylindrical coordinates, in
contrast to the IK definition.40 We have proposed a valid
alternative to the H definition for cylindrical geometries that
gives physically meaningful results for all three pressure
components. The new contour definition retains the Harasima
expression for the axial pressure component, which is suitable for
use with the Ewald summation method to treat long-range
Coulombic interactions. In general, we suggest that any
construction of the integral contour for the local pressure
tensor that depends on the polar coordinates (i.e., radius and
polar angles) should be avoided.
Because of the recent increased interest in the axial pressure

for fluids confined in different cylindrical pores, we have
presented a H/E method to calculate the long-range Coulombic
contributions to the local axial pressure for rigidmolecules based
on the Ewald summation algorithm and the Harasima-type axial
pressure component. As an application, we implemented our
approach to investigate the axial pressure profile for water inside
and outside a (20, 20) SWCNT in a water bath. The H/E
method is compared to the IK method, which assumes a ST
Coulombic potential. The two definitions lead to distinct local
axial pressure profiles near the pore wall, reflecting the
nonunique nature of the local pressure tensor, but they
consistently show a pressure profile that approaches the bulk
value near the tube center and far outside. The detailed analysis
of the fluid−fluid contribution to the axial pressure reveals that
the first water layer near the wall is in compression because of the
accumulation of the water molecules adjacent to the attractive
carbon wall. The first water layer then attracts the second
adsorbed water layer next to it through the electrostatic
interactions, creating tension between these two layers. The

Figure 8.Decomposition of the local axial pressure (in Figure 7) (a) by
the H/E method and (b) by the IK method, into the fluid−fluid and fw
contributions. The kinetic contribution is included in the fluid−fluid
profile. For the IK method, the Coulombic interaction is ST at 25 Å.
The molecular density profile of water inside and outside the nanotube
is also plotted. The shaded area in the pressure profile denotes the
standard error.
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spatial average of the fluid−fluid contribution to the local axial
pressure over the entire cylindrical pore indicates that the
confined water is in a stretched state. We have also accounted for
the fw contribution to the pressure. Because of the attractive
force field provided by the carbon wall, the fw interactions
contribute negatively to the axial pressure over the entire radial
range. Adding up both fluid−fluid and fw contributions to the
local axial pressure, however, leads to a seemingly inconsistent
mechanical picture for the first adsorbed water layer between the
H/E and IK method. The two methods produce opposite
pressure peaks corresponding to the first layer in the density
profile (i.e., a negative pressure peak for the H/E method and a
positive pressure peak for the IKmethod). This confusion points
to the need to explore the possibility of developing a unique
definition of the microscopic pressure,83,84 which could provide
a holistic and well-defined picture of the system. A study on this
topic is in progress.
The correct implementation of the pressure calculation is

important for understanding the mechanical and thermody-
namic state of the system. The method developed in this work
can be used to study transport phenomena of fluids in cylindrical
pores and to investigate the hydrogen-bond-induced pressuriza-
tion (or hydrophobic hydration effect) in confinement.85 The
calculation of the local pressure in an inhomogeneous system
can also act as a safety check to ensure that the bulk-like region in
the system is correctly simulated at the desired conditions.
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