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Exploring the Structural, Dynamic, and Functional
Properties of Metal-Organic Frameworks through Molecular
Modeling

Filip Formalik, Kaihang Shi, Faramarz Joodaki, Xijun Wang, and Randall Q. Snurr*

This review spotlights the role of atomic-level modeling in research on
metal-organic frameworks (MOFs), especially the key methodologies of
density functional theory (DFT), Monte Carlo (MC) simulations, and
molecular dynamics (MD) simulations. The discussion focuses on how
periodic and cluster-based DFT calculations can provide novel insights into
MOF properties, with a focus on predicting structural transformations,
understanding thermodynamic properties and catalysis, and providing
information or properties that are fed into classical simulations such as force
field parameters or partial charges. Classical simulation methods, highlighting
force field selection, databases of MOFs for high-throughput screening, and
the synergistic nature of MC and MD simulations, are described. By
predicting equilibrium thermodynamic and dynamic properties, these
methods offer a wide perspective on MOF behavior and mechanisms.
Additionally, the incorporation of machine learning (ML) techniques into
quantum and classical simulations is discussed. These methods can enhance
accuracy, expedite simulation setup, reduce computational costs, as well as
predict key parameters, optimize geometries, and estimate MOF stability. By
charting the growth and promise of computational research in the MOF field,
the aim is to provide insights and recommendations to facilitate the
incorporation of computational modeling more broadly into MOF research.
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1. Introduction

Reticular materials, such as metal-organic
frameworks (MOFs) and covalent organic
frameworks (COFs), have attracted signif-
icant attention over the past two decades
due to their exceptional properties and di-
verse applications. These materials are char-
acterized by their highly ordered porous
structures, which can be precisely tailored
to suit a wide range of applications, in-
cluding gas storage,[1–4] separation,[5] and
catalysis.[6–9] The field has seen consider-
able progress since the early years of the
21st century, with various research groups
reporting the synthesis of unique materials.
It is worth noting that the study of 3D co-
ordination polymers dates back to the early
20th century, with the well-known example
of Prussian blue,[10] but it was only in the
late 1990s that such materials were synthe-
sized with permanent porosity. In 2013 the
International Union of Pure and Applied
Chemistry (IUPAC) provided recommen-
dations on the terminology that should be
used in reticular chemistry research and de-
fined a MOF as a coordination network with

organic ligands containing potential voids.[11]

In this review, we explore the role of molecular modeling in
MOF-related research, with a supplementary focus on how ma-
chine learning can augment traditional modeling techniques.
By highlighting both the strengths and limitations of these ap-
proaches, we hope to inspire new avenues of research and devel-
opment in this exciting area of materials science. Through the
presentation of examples, we showcase the application of molec-
ular modeling methods to tackle significant challenges in this
field. In doing so, we aim to shed some light on the understand-
ing of molecular modeling and machine learning techniques
that can be used in MOF research, particularly for early-stage re-
searchers and experimentalists who are seeking to enhance their
grasp of these computational methodologies. Through relevant
examples, we demonstrate the role of these techniques in ad-
dressing critical challenges and as a complementary tool to exper-
iment in the discovery of new MOFs for particular applications.

The organization of this review is as follows: We begin with
a historical perspective on the synthesis and modeling of MOFs,
setting the context for the remainder of the discussion. Next, we
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Figure 1. Timeline highlighting some milestones in the synthesis of new MOFs, featuring their respective discovery years.

delve into density functional theory (DFT) and highlight several
of its applications in studying MOFs. Subsequently, we explore
how machine learning techniques can aid in executing DFT. We
then shift our focus to classical methods, specifically molecular
dynamics (MD) and Monte Carlo (MC) simulations, to examine
thermodynamic and transport phenomena in MOFs, such as ad-
sorption and diffusion. The review also provides some remarks
on simulation choices for classical methods. Further, we ex-
plore the integration of machine learning techniques to enhance
these classical methods. Finally, we conclude with a synthesis of
the insights gained and a projection of future directions in the
field.

2. Historical Overview

2.1. Historical Review of the Development and Synthesis of
MOFs

In 1989, Hoskins and Robson pioneered the concept of creating
solid, hybrid polymeric materials by interlinking metallic cen-
ters with tetrahedral or octahedral valency using rod-like organic
linkers connectors, suggesting the potential for unique struc-
tures and large interconnected cavities.[12] In a noteworthy de-
velopment in 1997, the group of Kitagawa introduced a frame-
work with gas-adsorption capabilities at ambient temperature.[13]

The properties of this framework allow it to be included in the
modern definition of MOF. It is best described as a tongue-
and-groove (bilayer) configuration, with the chemical formula
{[M2(4,4′-bpy)3(NO3)4] ⋅ x H2O}n (M = Co, x = 4; Ni, x = 4;
Zn, x = 2, bpy = bipyridine). This structure is assembled from
M(NO3)2 and 4,4′-bpy units. The pore sizes of the dehydrated
sample are approximately 3 to 6 Å. This material showed the
ability to reversibly adsorb CH4, N2, and O2, as one of the ear-
liest examples in the new era of nanoporous materials. The first
occurrence of the term “metal-organic framework” in the litera-

ture was in a 1995 paper by Yaghi and Li.[14] In 1999, this same
team reported the synthesis of MOF-5 (also known as IRMOF-
1), which swiftly became one of the most extensively studied
MOF structures.[15] In a follow-up paper, Yaghi and co-workers
introduced the concept of isoreticular chemistry, allowing the
systematic expansion of MOF structural design space through
varying the organic linkers and the connectivity of inorganic
nodes.[16] This was a landmark in the design and synthesis of new
MOFs with customizable properties. Today, there are thousands
of MOFs that have been reported in the literature, with more than
14000 frameworks deposited in the Computation-Ready, Experi-
mental (CoRE) MOF database[17,18] (a more detailed discussion
on the CoRE MOF database and other pivotal databases in the
MOF research community is provided in Section 4.3.1). We dis-
cuss a few well-known MOFs from a historical perspective, as
shown in Figure 1.

Cu-BTC, also known as HKUST-1 or MOF-199, was reported
in 1999 by Chui et al. at the Hong Kong University of Sci-
ence and Technology (HKUST).[19] This framework was pre-
sented as a material with high surface area and exceptional
gas adsorption properties, making it a widely studied mate-
rial for various applications, including gas storage and separa-
tion. Synthesis of another important framework, Mg-MOF-74
(also known as CPO-27-Mg),[20] focused research attention on
the concept of an open metal site (OMS), which is a coordi-
natively unsaturated metal node in a MOF that is accessible
to guest molecules. OMS enables enhanced chemical interac-
tions that can significantly influence the adsorption of various
gases, including those with dipolar, quadrupolar, and other dis-
tinct molecular characteristics. These sites can also serve as cat-
alysts. The magnesium OMS in Mg-MOF-74 demonstrates a no-
table contribution to the high gas adsorption capacities of this
framework, particularly for quadrupolar carbon dioxide (CO2)
and other gas molecules that can engage in strong chemical in-
teractions. Moreover, the MOF-74 structure offers the flexibility
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to incorporate diverse transition metals, enabling the fine-tuning
of its adsorption and catalytic properties and making this a plat-
form material for many investigations. Similar to IRMOF-1,
isoreticular versions of MOF-74 have been synthesized by in-
creasing the linker size. As a result, a MOF boasting some of the
largest pore sizes ever recorded (exceeding 70 Å) was successfully
synthesized.[21]

The discovery of MIL-53 (MIL = Materials Institute Lavoisier),
reported by Gérard Férey and his team in 2002,[22] marked a
significant milestone by extending MOF chemistry to include
trivalent CrIII metal ions. In 2004, they showed that the isoretic-
ular AlIII variant of this MOF exhibits framework flexibility in
response to external stimuli.[23] MIL-53 along with its isoreticu-
lar but less flexible counterpart, MIL-47(VIV)[24], shows the abil-
ity to undergo reversible structural transitions, often referred
to as breathing behavior, in response to changes in tempera-
ture, pressure, or the presence of guest molecules. The breath-
ing behavior of MIL-53 is attributed to the rotation of its or-
ganic linkers, which changes the steric hindrance in its struc-
ture and allows the framework to adopt two distinct phases: a
narrow-pore phase (MIL-53(np)) and a large-pore phase (MIL-
53(lp)). The transition between these phases is accompanied
by significant changes in the unit cell volume from 890 to
1430 Å.[25]

Another important class of MOFs are the zeolitic imidazolate
frameworks (ZIFs), which share structural similarities with ze-
olites and were introduced in 2006 by Huang et al.[26] Whereas
zeolites are built from Si-O-Si linkages with a bond angle of
about 145°, ZIFs are built from M-Im-M linkages, where M
is typically a metal cation in the 2+ oxidation state and Im is
a derivative of an imidazolate anion, which serves as a linker
(imidazolate, methylimidazolate, nitroimidazolate, etc.). In 2006,
Yaghi and co-workers reported the synthesis of a set of 12 ZIFs
with various zeolitic topologies.[27] ZIF-8, an extensively stud-
ied ZIF structure, demonstrated exceptional chemical stability
(7 days in boiling water; 24 h in aqueous sodium hydroxide at
100°C) and thermal stability (up to 550 °C, in N2 atmosphere).
ZIF-8′s stability, combined with its high surface area and tun-
able chemistry, has led to its extensive study for gas storage
and separation applications. ZIF-8 is also considered a flexible
MOF due to the gate-opening phenomenon it undergoes. In
this deformation, imidazolate linkers of a 6-member ring rotate
and increase the pore-limiting diameter (PLD) when exposed to
the flow of adsorbate (N2)[28] and external hydrostatic pressure
(1.5 GPa).[29]

Another subgroup of materials with high stability are Zr-
MOFs, which are distinguished by the presence of Zr6O8 metal
nodes within their structures. The first synthesized framework
from this group, UiO-66, was reported in 2008 by Lillerud and
co-workers at the University of Oslo, Norway, which inspired its
name (UiO = Universitetet i Oslo).[30] This MOF is composed of
12-connected zirconium oxide nodes connected by 1,4-benzene-
dicarboxylate (BDC) linkers. Due to its high thermal (540°C, in
N2 atmosphere) and chemical stability (water and acid stability),
UiO-66 and its derivatives have been extensively studied for vari-
ous applications, including gas storage, separation, catalysis, and
sensing. The discovery of UiO-66 as the 1st member of the Zr-
MOF family has had a substantial impact on the development
of new frameworks, making it an important milestone in the

history of these materials. Another widely studied Zr-MOF, NU-
1000, was synthesized in 2013 by Omar Farha and Joseph Hupp
at Northwestern University (NU).[31] It contains 1D channel-like
hexagonal mesopores and trigonal micropores and, like most
of the Zr-MOFs, it shows high thermal and water stability. Un-
like UiO-66, the metal node in NU-1000 is connected by 8 link-
ers, leaving 4 Lewis acid sites accessible. This results in various
versions of this framework that differ by a chemical modulator
attached to the node (such as aquo-hydroxo pairs, formate, ac-
etate, trifluoroacetate, metal atoms, and oxides, etc.), which can
significantly alter its properties (such as level of hydrophilicity
or catalytic activity).[32] The chemically labile nature of the node
makes it also an interesting candidate as a catalyst for many im-
portant reactions, such as the decomposition of nerve agents.[33]

Another important Zr-MOF, MOF-808, was reported in 2014 by
the Yaghi group.[34] It has 6-connected nodes and has been shown
as a promising candidate for water adsorption (e.g., for water har-
vesting applications) due to its relatively high uptake at low rel-
ative humidity.[34] The final Zr-MOF discussed here is PCN-222
and was synthesized by Hong-Cai Zhou at Texas A&M Univer-
sity in 2012.[35] This is a mesoporous MOF, isoreticular with NU-
1000, that displays biomimetic catalytic activity. The catalytically
active site is a Fe-porphyrin complex, which is incorporated into
the linker situated on the inner wall of an open channel with a
37 Å diameter. The material demonstrates good activity for ox-
idizing various substrates. The combination of a high density
of catalytic centers, ultra-large open channels (for MOF stan-
dards), and exceptional chemical stability of PCN-222(Fe) in-
dicate great potential for creating MOF-based platforms for
enzyme-mimicking catalysis.

The group of Stefan Kaskel from the Dresden University of
Technology (DUT) contributed to the field of reticular materials
chemistry with a range of frameworks. Particularly interesting is
DUT-49 (synthesized in 2012), which demonstrates the peculiar
phenomenon of negative gas adsorption (NGA),[36,37] a rare be-
havior in which the adsorbed gas amount decreases with increas-
ing pressure under certain conditions. This unusual property is
attributed to a structural change in the MOF, which involves a
transition between two different pore sizes and is induced by
strong adsorbent-adsorbate interactions.

MOFs are renowned for their exceptionally high surface ar-
eas (SA), which can exceed that of other porous materials such
as zeolites and activated carbons. MOF-5, introduced in 1999,
has a surface area of 3500 m2 g−1.[38] NU-110, a MOF synthe-
sized in 2012 held the record for the highest surface area material
(7140 m2 g−1)[39] until 2018 when it was surpassed by DUT-60
(7800 m2 g−1).[40]

More recently, the MOF CALF-20 has attracted much atten-
tion. While the initial patent application was filed in 2014, the
material was comprehensively characterized in terms of struc-
ture and properties by Shimizu and co-workers from the Uni-
versity of Calgary in Canada in 2021.[41] CALF-20 is a promising
MOF for post-combustion CO2 capture, as it meets the essential
criteria for an ideal adsorbent, such as high CO2 adsorption ca-
pacity, fast kinetics, high CO2 selectivity, and stability under var-
ious conditions. Unlike many MOFs, CALF-20 can tolerate am-
bient moisture or steam, and its synthesis is cost-effective and
scalable, using commercially available components and environ-
mentally friendly solvents.
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Figure 2. Trends in the utilization of various modeling techniques within
the MOF field: a quantitative analysis based on publication count from
Google Scholar (numbers represent publications per year). The data was
extracted with an academic paper word occurrence tool.[42]

2.2. Historical Review of Molecular Modeling for MOFs

Throughout the history of MOFs, molecular modeling has played
an important role in advancing our understanding of these mate-
rials (Figure 2). Computational methods have helped researchers
predict the properties of MOFs, such as their adsorption capa-
bilities or catalytic activity. These predictions have informed the
design and synthesis of new materials, accelerating the discov-
ery of novel structures with improved performance. Molecular
modeling has also facilitated our understanding of the under-
lying mechanisms behind unique phenomena in MOFs, such
as their remarkable structural flexibility and tunable pore envi-
ronments. Over the years, numerous molecular modeling tech-
niques have been employed to study reticular materials, includ-
ing density functional theory (DFT), ab initio molecular dynam-
ics (AIMD), and methods based on classical mechanics and sta-
tistical mechanics such as molecular dynamics (MD) and Monte
Carlo (MC) simulations. These approaches have been instrumen-
tal in elucidating the structural and dynamic properties of MOFs
and their interactions with various guest molecules.

The first articles reporting adsorption simulations in MOFs
emerged in the early 2000s. In 2001, Kawakami et al.[43] uti-
lized multiscale modeling, incorporating force fields and DFT,
to explore the adsorption of magnetic and nonmagnetic species
in a ZnBDC MOF. The authors highlighted the potential of
nanoporous crystalline materials, such as MOFs, to serve as
frameworks for controlling the distribution and orientation of
absorbed molecular species due to their highly ordered struc-
ture. In 2003, the group of Alexander Neimark investigated argon
adsorption in HKUST-1 using the grand canonical Monte Carlo
(GCMC) method and reported an excellent agreement of the sim-
ulated and experimental adsorption isotherms.[44] They were able
to identify preferential adsorption sites in the pores of the MOF
based on the simulation snapshots. This highlights a crucial ob-
jective of molecular modeling: to complement experimental tech-
niques by offering atomistic-level insights into phenomena that
would otherwise be challenging through experimental methods
alone. The use of extensive quantum-chemistry calculations in
MOF-related research was featured in a significant study pub-
lished in 2004,[45] where Sagara et al. used periodic DFT to op-
timize and derive partial charges for IRMOF-1 for subsequent
GCMC adsorption simulations of H2. Fragments of MOFs were

also selected to study the interaction energy of the framework
with hydrogen molecules at the MP2 level of theory.

Düren et al. investigated the applicability of materials from the
IRMOF family for methane storage using MC simulations[46] and
proposed new, in-silico-designed isoreticular MOFs which max-
imized predicted methane uptake, demonstrating the effective-
ness of simulations in guiding material design for various storage
applications and paving the way for hypothetical MOF design. In
another early study, Sarkisov et al. used molecular simulation to
understand the properties of IRMOF-1 by exploring the adsorp-
tion and diffusion of methane, normal alkanes, cyclohexane, and
benzene in this material.[47] Both studies underscore the useful-
ness of molecular simulations in understanding the properties
of MOFs and guiding the design of new materials for adsorption
applications, such as methane storage and separation processes.
The diffusion of light gases (Ar, CH4, CO2, N2, H2) in IRMOF-1
was also studied by the group of Skoulidas and Sholl.[48] The re-
sults supported the idea that MOF diffusion coefficients are sim-
ilar to those in zeolites, implying that experimental techniques
used for zeolites should also be applicable to MOFs.

In 2009, Keskin and Sholl reported one of the first com-
putational screening studies performed on eight frameworks
aimed at finding MOF membranes for gas separation (CO2/CH4,
CH4/H2, CO4/H2).[49] This number is modest when compared
with the articles published nowadays that report simulation re-
sults for many hundreds or even thousands of structures. How-
ever, this early work laid the groundwork for contemporary large-
scale screening simulations. In 2011, Wilmer et al. presented an
extensive screening study on over 130 000 hypothetical MOFs.[50]

They developed a computational approach to generate potential
MOFs using a library of building blocks derived from known
MOF structures. The attributes of each MOF, including pore-size
distribution, surface area, and methane-storage capacity, were
calculated. The study led to the identification of over 300 hypo-
thetical MOFs with a predicted methane storage capacity supe-
rior to any known material and uncovered important structure-
property relationships in the process. The large amount of data
generated in such screening studies, together with the develop-
ment of machine learning (ML) methods, has opened new op-
portunities for their application in the study of MOFs. The early
work from Woo et al. demonstrated that by using machine learn-
ing with structural descriptors it is possible to quickly identify
high-performing MOFs for CO2 capture, reducing the need for
compute-intensive screening and making the exploration of vast
search spaces feasible for various applications.[51] The basics of
machine learning methods and their applications to the discov-
ery and design of porous materials have been discussed in several
excellent reviews (e.g., ref.[52]).

3. First-Principles Computational Methods Applied
to Reticular Materials

DFT is a computational method for approximating the solutions
to the Schrödinger equation, the fundamental equation of quan-
tum mechanics. For a given arrangement of atoms, DFT allows
for the calculation of the energy, enabling the search for con-
figurations that minimize the energy, as well as the identifica-
tion of saddle points (energy barriers) on the potential energy
surface. The method can provide information on the electronic
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Figure 3. Applications of DFT calculations in the field of MOFs.

structure of atoms, molecules, and materials (Figure 3). DFT
is rooted in the Hohenberg-Kohn theorems,[53] which establish
that the ground-state properties of a many-electron system are
uniquely determined by its electron density. Thus, in contrast to
methods such as Hartree-Fock and its derivatives, which require
solving the Schrödinger equation for a multitude of interacting
electrons, DFT simplifies the computational task significantly by
considering the energy of the system to be a functional of the
electron density alone. An essential development in the prac-
tical application of DFT is the Kohn-Sham equations.[54] Intro-
duced by Walter Kohn and Lu Jeu Sham, these equations present
a method for converting the complex many-body problem into
a set of single-particle equations. In the Kohn-Sham approach,
the many-electron system is represented as a system of non-
interacting electrons (an auxiliary system) that have the same
ground state electron density as the actual system. Each electron
in this auxiliary system moves in an effective potential, consist-
ing of the classical electrostatic potential due to the nuclei and
the other electrons, but this effective potential only considers the
other electrons in a mean-field sense. In addition, the electrons
experience what is known as the exchange-correlation potential,
which encompasses the complex effects of electron-electron in-
teractions. Unfortunately, this exchange-correlation functional is
not known exactly, and approximations must be made. Solving
these equations yields a set of Kohn-Sham orbitals and their en-
ergies, which provide valuable information about the electronic
structure of the system.

When using DFT, the user must make several crucial deci-
sions related to the approximations that will be made. First,
the user must choose an appropriate exchange-correlation func-
tional. There are many families of functionals, including local
density approximations (LDA), generalized gradient approxima-
tions (GGA), and hybrid functionals, each with its strengths and
weaknesses, computational cost, and applicability to certain prob-
lems. Second, the user must select a basis set, which is a set of
functions used to expand the Kohn-Sham orbitals. Choosing a
basis set is a trade-off between computational cost and accuracy.
Larger basis sets provide more accurate results but at a higher

computational cost.[55] We refer the interested reader to standard
textbooks on DFT for further detail.[56,57]

DFT has proven to be a valuable computational tool for study-
ing a wide range of materials, including reticular materials such
as MOFs. In practice, DFT calculations can be performed using
two main approaches: plane wave basis functions and localized
orbital basis sets. The plane wave approach represents the wave-
function and orbitals as a superposition of periodic plane waves,
which is naturally suitable for studying periodic systems. His-
torically, it was applied to such systems as metals, semiconduc-
tors, or metal oxides and was most popular among physicists to
study the structural and electronic properties of materials. On
the other hand, the localized orbital approach employs a set of
atom-centered basis functions (such as Gaussian or Slater func-
tions) which are finite in extent and localized around atomic nu-
clei. This approach is more appropriate for non-periodic systems
and was usually applied by computational chemists to study the
properties of molecules.[55] Each of these two DFT approaches
has its own strengths and limitations, depending on the nature
of the system being studied and the specific scientific questions
being addressed. MOFs, being periodic crystals but composed of
discrete metal nodes and linkers, may be considered a kind of
hybrid between molecular systems and classical periodic solids.
Thus, both methods have been successfully applied in compu-
tational studies of MOFs. Figure 3 provides an overview of how
DFT calculations within both approaches can be helpful in calcu-
lations and simulations for studying the use of MOFs in energy-
related applications.

3.1. Geometry Optimization

Often, the first task in understanding a system is to obtain its low-
est energy geometry. This can also be useful in preparing MOF
structure for further simulations (either quantum mechanical or
classical). Thus, optimizing the geometry of a MOF structure is
often done by minimization of the energy and/or forces using
DFT. While it is difficult to suggest the exchange-correlation (XC)
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Figure 4. Accuracy of density functionals in predicting lattice parameters of MOFs. Data taken from refs.[59,58] MAD is the mean absolute deviation of
the lattice parameters.

functional that guarantees the highest accuracy, some groups
have reported benchmark analysis based on a comparison of
some structural properties derived from DFT calculations, such
as lattice parameters, bond lengths, angles, and dihedrals in com-
parison to experimental data.[58,59] The authors emphasized that
while no single XC functional consistently outperformed oth-
ers, the selection of a functional should take into account the
specific characteristics of the MOFs (such as flexibility) under
study. They also strongly emphasized the importance of includ-
ing long-range dispersion interactions in DFT calculations, either
through empirical corrections (Grimme methods,[60–63] available
in most periodic and cluster DFT codes or the Tkatchenko-
Sheffler method[64]) or non-local van der Waals density function-
als (vdW-DF).[65–69] Including dispersion interactions is needed
to predict the correct structural phase for some flexible frame-
works such as MIL-53 or ZIF-4. A summary of the discussed re-
sults is presented in Figure 4.

Flexibility in MOFs is related to collective lattice vibrations,
known as phonons. Phonons extend the notion of local vibra-
tional modes and provide insight into structural deformations.
By analyzing phonons, one can anticipate how the material will
react to temperature changes. The vibrations of the atoms in
the lattice can contribute to structural changes or even the col-
lapse of the MOF structure under certain conditions. Under-
standing phonon behavior in MOFs can help analyze or de-
sign materials with desired mechanical properties such as gate-
opening,[70–74] breathing,[75,76] structural stability,[77] and negative
thermal expansion.[78] Phonon modes can also affect the diffu-
sion of gases in the pores through collective motions of the atoms
in bottlenecks in the pore structure.[79]

3.2. Energetic Landscape of Flexible MOFs

Calculations of energy-volume relations can provide valuable in-
sights into the structural deformations of MOFs, particularly
when they incorporate information related to external stimuli.
These calculations enable a deeper understanding of MOF re-
sponse to various conditions, including temperature, pressure,
and presence of guest molecules. Energy-volume relations de-
scribe the dependence of a material’s energy on its volume,
reflecting the interplay between internal forces and structural

changes. By analyzing these relations in MOFs, it is possible to
gain insight into i) elastic properties such as bulk modulus, shear
modulus, and Young’s modulus, which are essential for predict-
ing and optimizing MOF mechanical stability and resilience un-
der different conditions[80,81]; ii) structural transitions through
discovery and description of various phases, such as breathing
in MIL-53,[82–84] negative thermal expansion in DUT-49,[85] pore
opening transformation in JUK-8,[84,86] and contraction in CUK-
1.[87]

In many cases, the energy-volume profile describes the
Helmholtz free energy F with contributions from vibrational in-
ternal energy and vibrational entropy:

F (T, V) = EDFT (V) + Evib (T, V) − TSvib (T, V) (1)

where EDFT is the DFT energy (with dispersion contribution), Evib
is the vibrational internal energy (or harmonic phonon energy),
Svib is the vibrational entropy, and T and V represent temperature
and volume, respectively. All contributions can be derived directly
from the phonon partition function which can be obtained us-
ing frequencies of phonon modes[88] and applied to calculate the
thermal dependency of the minimum-energy volume of a frame-
work through the quasi-harmonic approximation.[89] Figure 5 il-
lustrates the energy versus volume relationships for three MOFs
(MIL-53, DUT-49, and JUK-8), thereby shedding light on the
structural phase transitions they undergo in response to vary-
ing external stimuli. In the case of MIL-53, a breathing transi-
tion is induced by temperature changes, stabilizing the struc-
ture in the np phase at lower temperatures (global minimum
on the red curve), and transitioning to the lp phase as tempera-
tures rise (global minimum on the blue curve). DUT-49 exhibits
NGA where, due to interactions with guest molecules, the system
contracts, transitioning from the open phase when empty (min-
imum of the red curve) to the closed phase when the number of
guest molecules exceeds some threshold (minimum of the blue
curve). JUK-8 undergoes a pore opening transition from a closed
phase (minimum on the red curve) to an open phase (global mini-
mum on the blue curve) when exposed to a specific pressure from
guest molecules. These examples underscore the usefulness of
energy versus volume relations in the analysis of structural phase
transitions in MOFs.

Adv. Funct. Mater. 2023, 2308130 2308130 (6 of 25) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 5. Schematic free energy profiles that explain structural phase transitions: breathing in MIL-53, NGA in DUT-49, and pore-opening in JUK-8. The
red lines represent free energy without the contribution of any stimulus (temperature, pressure, chemical potential); the blue lines represent the free
energy under the influence of temperature (MIL-53, narrow to large pore transition), number of guest molecules present in the pores (DUT-49, large to
contracted pore transition), and pressure of adsorbate (JUK-8, formation of new stable phase). Data taken from refs.[82,84,85]

3.3. Interactions of MOFs with Guest Molecules

DFT methods have proven to be valuable tools in examining
the interactions of guest molecules with MOFs, especially when
there are strong and specific chemical interactions beyond weak
physisorption. As highlighted in the introduction, MOFs with
Zr6O8 nodes are promising materials for many potential appli-
cations, including carbon capture and water harvesting, and in-
teractions of these molecules with zirconium nodes exhibit in-
teresting and sometimes unexpected behavior. Grissom et al.
studied this problem by performing systematic infrared spectro-
scopic studies, which together with DFT calculations[90] showed
that CO2 adsorption in UiO-66 involves two main binding pro-
cesses: hydrogen bonding with μ3-OH groups inside the tetra-
hedral pores and through more typical dispersive interactions.
The enthalpy of adsorption for hydrogen-bonded and dispersion-
stabilized CO2 species was found to be −38.0 and −30.2 kJ mol−1,
respectively. This example highlights how comparing calculated
and measured infrared frequencies can be a useful method to
validate computationally predicted host-guest interactions. The

authors showed that different adsorption modes are related to
different frequencies of CO2 asymmetric stretching mode, with
stronger interaction associated with larger redshift relative to
bulk CO2 (10 and 14 cm−1 for dispersion-stabilized and bonding
with μ3-OH groups, respectively). This can be explained by the
effect of charge transfer between the CO2 oxygen atom and the
adsorbent, causing a weakening of the C─O bond and reducing
the associated vibrational frequency (in the harmonic approxima-
tion, the energy is a linear function of the frequency). Potential
binding of CO2 on open metal sites in Zr-MOFs associated with
missing linker defects was also predicted by DFT calculations,
with an even higher adsorption enthalpy of -57 kJ mol−1.

In a related study, Rayder et al. examined CO2 adsorption on
the 6-connected Zr node of MOF-808.[91] They discovered that
changing the modulator attached to the node can induce mon-
odentate binding, deviating from the usual bidentate binding
(Figure 6). Monodentate binding opens up a Zr site for possi-
ble CO2 chemisorption. The frequency shift of the stretching
mode of chemisorbed CO2, as calculated using DFT, aligned well
with the experimental results. Tan et al. highlighted a similar

Figure 6. Change of CO2 stretching mode frequency calculated by DFT for MOF-808. Comparison of calculated and measured frequencies provided an
explanation of the adsorption mechanism observed in experimental infrared spectroscopy. The frequencies taken from the ref.[91] Carbon atoms are
brown, hydrogen white, oxygen red, zirconium green.

Adv. Funct. Mater. 2023, 2308130 2308130 (7 of 25) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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phenomenon[92] and based on the observation of a significant in-
frared band in the 1700–1650 cm−1 range of experimental spec-
tra, they proposed a new perspective on defect termination in the
MOF UiO-66. With periodic DFT calculations, they suggested the
presence of unidentate COO− groups from the formate modu-
lators stabilized by H-bonding with a terminal water molecule.
Contrary to the assumption that modulator COO− groups bind
tightly with two Zr sites via bidentate coordination, it was shown
that water readily inserts and breaks one of the Zr─O─C bonds,
forming a detectable C═O absorption band above 1650 cm−1.
The high catalytic activity observed in defective UiO-66 may be
attributed to its ability to easily add and remove water molecules.

Vibrational frequencies calculated by DFT may show system-
atic deviations from experimental values, and this is typically
addressed through the application of an empirical scaling fac-
tor. One way to obtain the scaling factor is to take the ratio of a
well-known, relevant experimental frequency (like the bulk CO2
stretching mode at 2349 cm−1) to the calculated DFT value. Al-
ternatively, one can consider using a database of scaling factors
developed by the group of Truhlar[93,94] (note that there are differ-
ent scaling factors for comparing infrared frequencies with ex-
periment and for thermochemistry).

The evaluation of interaction energies typically necessitates the
calculation of both the enthalpy and free energy associated with
the process. They are typically obtained from thermal energies
and entropies. The contributions from low frequencies introduce
significant noise when applying the rigid-rotor harmonic approx-
imation (as the vibrational entropy asymptotically reaches infin-
ity when frequencies approach 0). To overcome this limitation,
a quasi-rigid-rotor-harmonic-approximation (quasi-RRHO) was
proposed by Stefan Grimme, in which, for the frequencies lower
than the selected cutoff (usually between 50 and 150 cm−1), the
entropy is calculated as the combination of vibrational and rota-
tional entropies.[95] For systems containing more than 300 atoms,
this approach can change the free energies up to 15 kJ mol−1.
Similar improvement is observed when the quasi-RRHO approx-
imation is applied in adsorption enthalpy calculations,[96] which
are of great interest in the MOF simulation community. More-
over, when using an implicit solvent model or considering vari-
ous configurations of reacting species, it is crucial to also account
for solvation and configurational entropies.[95,97] GoodVibes is a
versatile Python tool that calculates thermochemical data from
quantum chemistry calculations, accounting for all the issues de-
scribed in this paragraph. With automated features, it saves re-
searchers time, incorporates valuable corrections, and prevents
human errors in analyzing large numbers of output files.[98]

3.4. Catalysis

DFT has emerged as a powerful tool for studying and predicting
the catalytic behavior of MOFs, as well as unraveling the intri-
cate structure-property relationships that underlie catalytic pro-
cesses. In a typical application, the researcher postulates a set
of reaction intermediates and tries to optimize their geometries
using DFT. Then, saddle points connecting the intermediates
are located to provide the transition states and the energy barri-
ers for the proposed reaction mechanism. For example, Figure 7
shows a simple reaction pathway for the MOF-catalyzed hydrol-

Figure 7. Free energy diagram for reaction pathway of DMNP hydrolysis
using two types of Zr clusters in NU-1000 MOF, compared to the un-
catalyzed scenario. Figure recreated based on the data from ref.[99] R—
reactant, TS—transition state, In—intermediate state, P—product.

ysis of the chemical warfare agent simulant DMNP, as well as
the uncatalyzed reaction.[99] The free energy diagram illustrates
that the barrier for the MOF-catalyzed reaction associated with
the transition state TS2 (measured as the free energy difference
between TS2 and the intermediate I1) is significantly lower than
that of the uncatalyzed reaction (measured as the free energy dif-
ference between TS2 and R). Additionally, the reaction free en-
ergy diagram shows that in the distorted node, the 1st transition
state TS1 (related to the dehydration of the node) is not present
due to prior thermal activation. Spectroscopic properties, such
as IR spectra, can also be calculated for the intermediates, as in
Figure 6, for comparison with the experiment. Transition states
can be calculated with saddle-point searching methods such as
nudged elastic band (NEB),[100–102] dimer method[103,104] or Berny
algorithm.[105]

This approach has allowed researchers to optimize MOF-based
catalysts for a wide variety of energy and environmental applica-
tions, including hydrocarbon activation, toxic substance degra-
dation, CO2 reduction, and cross-coupling reactions. To fine-
tune the catalytic performance of MOFs, DFT calculations have
been utilized to investigate two crucial aspects in the design of
MOF catalysts. The first aspect is the active site engineering,
which typically involves tuning the coordinatively unsaturated
metal sites and their coordination environment on the metal
nodes. For example, previous studies have leveraged both the
plane wave[106–113] and localized orbital[109,107,114–116] approaches
to explore the optimal combination of the metal site and its sur-
rounding ligands for enhanced C─H bond activation. The sec-
ond aspect is tailoring the surrounding pore structure,[117] espe-
cially the pore surface functionality and size. Well-defined pore
structures in MOFs can induce a confinement effect that restricts
the movement and orientation of guest molecules within the
confined space, altering their electronic and chemical environ-
ment, and thereby significantly enhancing catalytic activity and
selectivity.

Compared with the plane wave approach, the localized orbital
approach is more commonly used for engineering the active sites
of MOF catalysts due to its higher computational efficiency, par-
ticularly in the search for transition state structures to calcu-
late energy barriers in a catalytic process. However, the cluster

Adv. Funct. Mater. 2023, 2308130 2308130 (8 of 25) © 2023 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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approach does not include information on the surrounding pore
structure and the resulting confinement effects, which can result
in significant errors in the calculation of reactant and product
binding energies, particularly in MOFs with smaller pores. For
instance, in our recent study[118] on the hydrolysis of a nerve agent
using Ti-MFU-4l, disregarding such confinement effects resulted
in a 72 kJ mol−1 underestimation of the binding energy of the
nerve agent on the reaction center, underscoring the plane wave
approach’s comparative advantage in estimating the confinement
effect in MOFs.[118] Additionally, the localized orbital approach
typically employs cluster models truncated from periodic mod-
els, which can result in ground spin states that are inconsistent
with those in periodic models, particularly for MOFs with anti-
ferromagnetic transition metal pairs.[119] In addition to these two
approaches, the QM/MM (quantum mechanics/molecular me-
chanics) approach is an attractive strategy to model MOF cata-
lysts. This approach treats the reaction center using quantum me-
chanics methods like DFT, while the remaining parts are treated
using classical molecular mechanics methods, providing a rea-
sonable compromise between accuracy and efficiency.[120,121] It is
surprising that QM/MM is not used more frequently in modeling
MOF catalytic processes.

There are several other factors that should be carefully consid-
ered when performing DFT calculations for MOF catalysts. First,
the choice of exchange-correlation functional can significantly
impact the accuracy of DFT calculations. Some widely used func-
tionals include the GGA functionals like PBE, hybrid function-
als like B3LYP, TPSSh, and PBE0, and the family of functionals
developed by the group of Truhlar, such as M06-L, M06-2X, and
MN15. It is a good practice to test multiple functionals using ex-
perimental or high-accuracy computational data as benchmarks
to identify the most suitable functionals for specific applications.
Second, the Hubbard +U correction[122] for transition metals is
typically necessary for the plane wave approach to account for
strong on-site electron-electron interactions not well-described
by standard DFT exchange-correlation functionals.[123,124] The U
value is typically determined by benchmarking against experi-
mental measurements or employing higher-accuracy computa-
tional data to ensure an accurate representation of the prop-
erties of interest. Third, similar to the case of flexibility, the
van der Waals interactions can play an important role in MOF
catalysis systems, requiring accurate treatment using dispersion-
corrected DFT methods described above. Finally, the effects of
solvents or co-catalysts on performance in MOF catalysis systems
need to be considered, which can be achieved using implicit sol-
vation models like the polarizable continuum model (PCM), ex-
plicit solvent simulations, or a combination of the two.[125] It is
always highly recommended to consult the relevant literature to
determine the standard computational methods for the systems
of interest.

3.5. Generation of Force Field Parameters

Beyond predicting reaction intermediates and transition states
and analyzing the formation and breaking of chemical bonds,
DFT calculations can also be employed to generate force fields
for both molecules and frameworks, enhancing the understand-
ing and prediction of adsorption behavior in complex systems

and facilitating classical adsorption simulations such as GCMC.
QuickFF is a user-friendly method for generating force fields
based on DFT calculations with a strong focus on MOFs.[126]

QuickFF input data consists of ab-initio equilibrium geometries
and a Hessian (it is used in vibrational frequency calculations) of
smaller building units (linkers and metal nodes), and it uses sim-
ple mathematical expressions to represent the interatomic po-
tential. The protocol was shown to be effective on a large set of
organic molecules and MOFs, like MIL-53(Al) and MOF-5, gen-
erating accurate force fields for their periodic structures. This
accuracy was confirmed based on the precision of molecule ge-
ometries, the unit cells of the MOF structures, and the vibra-
tional frequencies. Notably, QuickFF is designed for parametriz-
ing intra-molecular and intra-framework interactions, such as
bonds, angles, and torsions, rather than long-range interactions
like van der Waals or Coulomb. QuickFF has been implemented
as an accessible Python code and is conveniently available on-
line. QuickFF was recently updated to be able to use periodic ab-
initio input data, and an extension to the energy expression was
developed, including anharmonic bond and bend contributions
together with the cross terms.[127] QuickFF was successfully used
in a wide range of applications, including the analysis of phase
transitions in COFs,[128] the mechanical stability of UiO-66,[129]

contraction of CUK-1,[87] and thermal expansion in a large group
of MOFs.[87]

Ab initio methods are commonly used in generating par-
tial atomic charges for use in classical simulations. There are
two general approaches for generating partial charges from
DFT: electrostatic potential fitting and electron density partition-
ing. Here, we highlight two methods that are commonly ap-
plied in MOF studies: density-derived electrostatic and chemi-
cal (DDEC)[130–134] charges and repeating electrostatic potential
extracted atomic (REPEAT) charges.[135] DDEC is a density parti-
tioning method that allows for the determination of atomic par-
tial charges, optimizes them to be chemically meaningful, and
reproduces the electrostatic potential far from the high electron
density region (far from the atoms, i.e., in the pores of MOFs).
This method achieves this by optimizing atomic electron den-
sity distributions to resemble reference states and to be close to
spherically symmetric around the atoms. DDEC accounts for dif-
ferent types of charge transfer, such as ionic bonding, covalent
bonding, charge compensation, and dielectric screening, making
it versatile and applicable to a wide range of materials. The RE-
PEAT method is a simple and robust approach to derive charges
in periodic systems based on fitting to the electrostatic poten-
tial generated by the electron density. It addresses the issue of
the ill-defined offset in the electrostatic potential within periodic
electronic structure calculations. This method can be applied to
both molecular and periodic systems, providing physically rea-
sonable and consistent charges. REPEAT charges show stabil-
ity concerning variations in van der Waals radii and in electro-
static potential grid point density, and are particularly useful for
simulating nanoporous materials like MOFs, offering a straight-
forward and automatable approach to deriving charges for peri-
odic systems. In a benchmark analysis of various empirical and
electron-density-based charges performed by Liu and Luan,[136]

the authors used DDEC charges as a gold standard method em-
phasizing their transferability and consistency. Importantly, both
DDEC and REPEAT methods are implemented in such a way that
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they can work with a variety of DFT software and both plane-wave
and localized basis sets.

3.6. Machine Learning Tools to Facilitate DFT Calculations

As demonstrated above, DFT methods have garnered consider-
able interest due to their ability to analyze various phenomena
in the MOF field, as well as aiding in the prediction of critical
features for subsequent classical simulations (see below). This
popularity is due to DFT’s appealing balance between compu-
tational cost and accuracy in comparison to the more resource-
demanding yet accurate correlated wavefunction theory. How-
ever, up until now, there has been no universally accurate density
functional discovered, resulting in some degree of uncertainty in
the quality of data produced by DFT. Duan et al. developed a den-
sity functional recommender approach[137] for selecting the best
approximations to improve computational chemistry accuracy.
The method uses neural networks together with transfer learn-
ing and was trained on a set of 300 transition metal complexes
that are reasonably representative of MOF materials. The recom-
mendation is provided based on the vertical spin splitting energy
(energy between the high and low spin states of the complex) as
a reference and was trained with data generated by (DLPNO)-
CCSD(T) theory[138] that serves as a gold standard in modern
computational chemistry. The recommender outperforms con-
ventional methods and can be applied to various systems and
computational methods. The recommender can be used along-
side traditional high-throughput screening workflows without ex-
tra computational cost.

The same group developed an ML model that can predict
ground-state spin states in metal complexes.[139] Remarkably,
the model predicts the spin states only based on the struc-
ture. The authors used over 2000 experimentally characterized
Fe(II)/Fe(III) complexes and employed a B3LYP-trained artifi-
cial neural network (ANN) to predict spin-state-dependent metal–
ligand bond lengths and classify experimental ground-state spins
based on agreement with the ANN predictions. This approach
offers a promising alternative to the conventional energy-based
spin-state assignment using electronic structure theory, with the
low computational cost of a machine learning model. Jablonka
et al. developed an ML model (oxiMACHINE) for predicting oxi-
dation states in MOFs.[140,141] Their machine-learning model was
trained on chemist-assigned oxidation states from the Cambridge
Structural Database to automatically assign oxidation states to
metal ions in MOFs. By considering only the immediate local en-
vironment around a metal center, the model is robust against ex-
perimental uncertainties such as incorrect protonation, unbound
solvents, or changes in bond length. The method demonstrates
good accuracy and was able to detect incorrect assignments in
the Cambridge Structural Database. As MOFs garner increasing
interest across various scientific fields, this method may prove
especially beneficial for researchers working with these materi-
als who may not possess a strong chemical intuition.

Furthermore, ML methods can facilitate geometry optimiza-
tion tasks in high-throughput screening studies. Duan et al. in-
troduced a dynamic classifier that monitors geometry optimiza-
tion in real-time and terminates unproductive calculations.[142]

This convolutional neural network model uses incremental in-

formation from DFT geometry optimization and generalizes well
across various chemical spaces. By incorporating uncertainty
quantification, the dynamic classifier can save more than half
of the computational resources that would have been wasted on
failed calculations, demonstrating its transferability and potential
for catalyst design.

Illustrative of the potential of machine learning in the field of
MOFs is the work by Moosavi et al., who employed a gradient-
boosted ML model to predict heat capacity in MOFs.[143] Despite
a training set of just over 230 MOF structures, the model demon-
strated impressive accuracy with a root mean squared error be-
low 3%. This study unveiled considerable variability in the heat
capacity of MOFs, contradicting the common assumption of a
constant value for most MOFs. Historically, researchers assumed
a constant heat capacity for most MOFs when doing process
level modeling due to a lack of data. However, this innovative
model revealed that MOF heat capacities can vary between 0.4
and 1.2 J/g/K. This finding has significant implications for high-
throughput screening studies, particularly when evaluating pro-
cesses that involve heating or cooling of MOFs, where this contri-
bution to the total heat must be considered, such as in adsorption
cooling. Furthermore, this successful approach aligns with other
achievements in the realm of ML applications for MOFs, such as
predicting band gaps[144] or the bulk modulus.[145] Such accom-
plishments underscore the versatility and broad potential of ML
in advancing MOF research (Figure 8).

4. Classical Methods for Modeling MOFs

For systems with a large number of atoms, DFT and other quan-
tum mechanical methods can become infeasible due to the high
computational costs involved. As an alternative, force-field-based
simulation methods using models based on classical (versus
quantum) mechanics and statistical mechanics are often em-
ployed to calculate thermodynamic and transport properties in
MOFs, such as adsorption isotherms and the diffusion coeffi-
cients of guest molecules (Figure 9). In these methods, the en-
ergies and forces within the system are determined by classical
potentials that describe interatomic interactions, rather than by
solving the Kohn-Sham equations. In this section, we discuss
two widely used simulation techniques: MD and grand canonical
Monte Carlo (GCMC) simulations, with a focus on their applica-
tions to MOFs. We also explain some choices that are required
to set up these simulations and review current advances in the
field where machine learning is applied to assist and enhance
the workflow of classical simulations.

4.1. Monte Carlo Simulations

Monte Carlo is a computational technique for calculating the
thermodynamic properties of molecular or material systems by
sampling configurations of the system based on their probabil-
ity distribution under certain thermodynamic conditions. By av-
eraging over the configurations, thermodynamic properties can
be calculated, such as the number of adsorbate molecules in the
system at equilibrium, heats of adsorption, virials, and heat ca-
pacities of the adsorbed phase. For MOF-related applications, gas
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Figure 8. Examples of machine learning methods that can enhance DFT calculations: geometry optimization monitoring to discard meaningless struc-
tures, spin state and oxidation state recommender, and geometry-based heat capacity calculations.

adsorption is the central property of interest, and grand canoni-
cal Monte Carlo (GCMC)[146,147] or Gibbs ensemble Monte Carlo
(GEMC)[148] simulations are naturally suited to serve the purpose.
For instance, to simulate pure methane adsorption in a MOF,[46]

the following steps are typically implemented in GCMC:

1) Set the chemical potential of methane (equivalently, the bulk
phase pressure or fugacity), the number of unit cells of the
MOF to be considered in the simulations (at least twice the
interaction cutoff value to avoid self-interactions), and the sys-
tem temperature. Generate an initial configuration of the sys-
tem to start the simulation.

2) Pick an MC move randomly from a pool of possible moves
such as insertion, deletion, translation, or rotation (note:
the rotation move is specifically used for non-spherical
molecules, which might have different orientations within
the simulation box) of a molecule. The insertion or deletion
moves ensure that the adsorbed phase reaches chemical equi-
librium with the bulk phase, i.e., chemical potentials in both
phases are equal. The translation and rotation moves ensure
that the adsorbed phase reaches thermal equilibrium.

3) Either accept or reject the attempted MC move based on the
change in the system energy and the Metropolis acceptance
rule.[149,150]

4) Repeat steps 2 and 3 until the number of methane molecules
(and the energy) in the system fluctuates around a constant
value. The system is now equilibrated.

5) Continue steps 2 and 3 and calculate properties of interest by
averaging over the configurations.

Figure 10 shows an example of three simulated isotherms of
different types in MOFs.

In GCMC, the bulk phase (outside the MOF) is implicitly
described by an equation of state (EOS) that relates the im-
posed chemical potential (or fugacity) with the bulk tempera-
ture and pressure (and composition if a mixture is simulated).
In the simplest approach, the ideal gas EOS is applied, and
the bulk phase fugacity equals the pressure. Alternatively, other
EOS can be used, with the cubic Peng-Robinson EOS being
one of the most common.[154] This EOS is parameterized us-
ing the critical parameters (temperature and pressure) and acen-
tric factor of the fluid, which can be determined computation-
ally for specific molecule models or taken from experimen-
tal data if there is good agreement between the model and
experiment.

In comparison, GEMC uses two simulation boxes, both with
periodic boundary conditions (as also used in the adsorbed phase
box in GCMC): the first box models the adsorbed phase with

Figure 9. Schematic representation of problems that can be addressed by MD, MC, or both methods.
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Figure 10. Simulated adsorption isotherms of different types: argon in IRMOF-1 at 78 K (type I), water in MOF-LA2-1 at 298 (type V), and ni-
trogen in MOF-200 at 77 K (type IV). Data taken from refs.[151–153] Isotherms are shown on the left with a linear pressure scale and on the
right with a logarithmic pressure scale. Note the advantages of a logarithmic pressure scale for distinguishing differences in the low-pressure
data.

the framework structure, and the second box explicitly mod-
els the bulk phase. The system temperature, pressure, and to-
tal number of molecules (sum of the number of molecules in
both boxes) are set constant for the simulation. If the frame-
work structure is assumed to be rigid, the volume of the ad-
sorbed phase box is fixed, while the volume of the bulk phase
box is allowed to expand or shrink to maintain the pre-defined
pressure. During the simulation, in addition to the translation
moves of molecules within each simulation box, molecules are
also transferred between the two boxes. Such a transfer move
is analogous to the insertion or deletion moves in the GCMC
scheme. Again, MC moves are repeated until the system reaches
equilibrium.

GCMC, predominantly utilized for gas adsorption, can be ap-
plied for simulations in open systems, allowing the exchange of
molecules with an implicit bulk reservoir, thus speeding up the
simulations. On the other hand, GEMC, originally tailored for
phase equilibria simulation (vapor-liquid coexistence curve), de-
mands an explicit simulation of both phases, either gas and liq-
uid or bulk and adsorbed phases in adsorption simulations. For
more technical details of MC simulations, we refer the readers to
refs.[150,155,156]

Currently, a number of MC simulation packages are publicly
available for modeling gas and liquid adsorption in MOFs.[155]

In general, the software can be divided into two categories:
CPU-based packages and GPU-based packages. CPU-based pack-
ages can use a serial or parallel implementation within a CPU
framework. Several prominent options for CPU-based MC sim-
ulations are RASPA,[157] DL_MONTE,[158] Cassandra,[159] and
Towhee.[160] GPU-based packages are designed to maximize the
parallelization capability of GPU machines. This requires spe-
cial implementation of conventional MC algorithms, such as
distributing energy calculations to multiple cores on the GPU.
GOMC[161] is an open-source MC simulation package that uti-
lizes the parallelization power of GPU machines to accelerate
multiple types of MC simulations. In addition to differences
in their design framework, these MC packages also differ in
their capabilities for performing certain statistical samplings and
MC moves.

4.2. Molecular Dynamics Simulations

MD simulations predict the time evolution of the positions and
velocities of individual atoms in a system by integrating Newton’s
equations of motion. Therefore, unlike the MC method, MD sim-
ulations can be used to extract dynamic information from the sys-
tem. According to the ergodic hypothesis, over a long period of
time, an MD simulation should lead to the same sampling of the
phase space as an MC simulation at equilibrium. The dynamic
nature makes MD simulations particularly useful for predicting
transport properties, such as diffusion coefficients and relevant
non-equilibrium phenomena where a pressure, temperature, or
concentration gradient is present in the system.[156]

There are several open-source packages for conducting
MD simulations. Some of the commonly used examples in-
clude LAMMPS,[162] NAMD,[163] GROMACS,[164] RASPA,[157]

HOOMD-blue,[165] and DL_POLY.[158] The first three can take
advantage of CPU parallelization with GPU acceleration. While
NAMD is primarily applied in biological systems, LAMMPS and
GROMACS are quite often used in MD simulations involving
MOFs. Prior to an MD simulation of adsorbate molecules in a
MOF, it is advisable to randomly distribute the molecules in the
pore and perform an initial equilibration with a simple NVT-
MC algorithm to avoid unphysically high forces in the system
caused by overlap of the atoms. Such an initialization can be per-
formed with any MC software such as RASPA. Alternatively, the
energy of the guest molecules can be minimized via a geometry
optimization algorithm. The simulated system should be equili-
brated prior to the proper MD simulation (so-called production
run). Equilibration is the process of allowing the system to reach
a stable state before starting the production run, where data is col-
lected for analysis. During equilibration, the system’s properties,
such as temperature, energy, pressure, or volume, should reach
an equilibrium state where they fluctuate around their average
values without any significant increase or decrease over a longer
time scale. The number of equilibration steps needed to achieve
this state can depend on factors such as the complexity of the
system, the interactions between particles, and the initial condi-
tions. Monitoring the system’s properties (energy, temperature,
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pressure) during these equilibration steps allows one to deter-
mine when the system has reached a state of equilibrium. It is
important to note that there is no fixed number of equilibra-
tion steps that applies universally to all systems. Determining
the appropriate equilibration time often requires careful analy-
sis and judgment based on the specific characteristics of the sys-
tem being simulated. Following the equilibration procedure, the
MD production run can be conducted for sampling the thermo-
dynamic and transport properties of the system. The length of
the simulation usually depends on the properties of interest. For
instance, to calculate the self-diffusion coefficient of adsorbate
molecules, the mean squared displacement needs to be propor-
tional to time, and hence, the simulation should be continued
until this requirement is satisfied. The time autocorrelation func-
tion of a specific variable can be another property that is moni-
tored for adequate sampling. An autocorrelation function usually
decreases from its initial value, which is one, to zero during a
long enough MD simulation (relaxation time or correlation time).
Therefore, for a proper sampling, the length of the MD simula-
tion should be much longer than this relaxation time, and to re-
duce uncertainty, the sampling should be started after the relax-
ation time.[56] While it is possible to design MC moves to sample
configurations of the solid framework, MD simulation is more
natural and convenient to model the flexibility of the framework.
Coupled with MC simulations, the hybrid MC/MD algorithm has
been used to simulate gas adsorption in flexible frameworks.[166]

Here, we highlight several important applications of MD simu-
lations to study phenomena in MOFs. These include simulations
of molecular diffusion in complex pore landscapes and calcula-
tions of the thermal conductivity.

4.2.1. Diffusion

Various diffusion coefficients, including the self-diffusion coeffi-
cient (also known as the self-diffusivity), are among the impor-
tant physical parameters that can be calculated using MD sim-
ulations. To calculate the self-diffusion coefficient of adsorbate
molecules in MOFs, the mean squared displacement (MSD) of
each molecule is tracked during the MD simulation, and the self-
diffusivity can be calculated from the Einstein equation:[150,156]

Ds = lim
t→∞

1
2dt

1
N

N∑
l=1

[
rl (t) − rl (0)

]2
(2)

where d is the dimensionality of the system (1,2 or 3), t is time, N
is the number of molecules, and rl is the position vector of the l-th
molecule. While the equation above includes an average over the
different molecules in the system, a good practice is to further
increase the statistics and include an average over all possible
time intervals 𝜏:

MSDav (𝜏) = 1
N

N∑
l = 1

nΔt∑
𝜏 = Δt

(
1

n − 𝜏

Δt
+ 1

nΔt−𝜏∑
t = 0

[
rl (t + 𝜏) − rl (t)

]2

)
(3)

Ds = lim
𝜏→∞

1
2d𝜏

MSDav (𝜏) (4)

In this equation, n represents the number of timesteps in the
simulation, effectively defining the simulation’s length. The first

summation accounts for the number of molecules in the system,
the second for the average over multiple time intervals 𝜏, and the
third ensures consideration of all possible time origins for the
MSD calculations for a given 𝜏 (see Figure 11 for details). The
shortest possible time interval is the same as the time step Δt
chosen for the simulations; however, for practical considerations,
often a slightly larger interval is selected as the shortest one. The
largest interval is the total simulation time. n − 𝜏

Δt
+ 1 is the total

number of summation terms of a given time interval used in av-
eraging over multiple time origins. Note that Ds should be calcu-
lated for the range in which the MSD is proportional to the time
interval.[167] Complete details for calculating the self-diffusivity of
adsorbate molecules are provided by Sharp et al.[168] For a simu-
lation of a bulk fluid, the number of degrees of freedom (DOF)
is typically given by 3N-3, where 3 degrees are subtracted to ac-
count for the conservation of the momentum of the center of
mass of the system. However, when performing molecular dy-
namics (MD) simulations with an external field (such as a rigid
framework or implementing a temperature or pressure control
algorithm), this conservation is no longer valid, and the number
of DOF becomes 3N. This distinction becomes important when
considering temperature calculations in MD simulations, as it
can impact the accuracy in calculating certain properties, like dif-
fusion coefficients, particularly in systems with a low number
of particles (less — than 50). Xu et al.[169] provide examples that
specifically tackle this concern, offering solutions for some of the
commonly used MD codes.

Several studies have been performed to determine the self-
diffusivities of diverse adsorbate molecules in MOFs.[168,170] For
instance, Bukowski and Snurr studied the effect of topology in 38
MOFs on the diffusion of alkanes.[171] The most interesting as-
pect of their work is the clear demonstration that MOF topology
— the arrangement and interconnectivity of pores—significantly
affects the diffusivity of guest molecules such as propane and
isobutane, with their self-diffusion coefficients spanning more
than two orders of magnitude across different Zr6 MOF topolo-
gies. This reveals that slight changes in the internal structure
of MOFs can dramatically alter their physical characteristics,
demonstrating the tunability of MOFs. Moreover, the observa-
tion that the node connectivity influences the propane diffusiv-
ities more than the MOF pore limiting diameter, especially at
low loading, illustrates how complex these materials can be. This
complexity offers a wide spectrum of potential applications, but
also hints at the challenges faced in designing and optimizing
MOFs for specific uses.

Experimental screening of MOFs to gain physical and chemi-
cal insights into the connection between MOF structure and ad-
sorbate diffusion is challenging, but with increasing computer
speed, it is now possible to use simulation to provide such in-
sights. For example, the diffusivities of the chemical warfare
agent (CWA) simulant dimethyl methyl phosphonate (DMMP)
were calculated for 776 hypothetical MOFs with Zr nodes and
different pore sizes.[172] The data were analyzed using machine
learning, which revealed that the node-node minimum distance,
gravimetric surface area, volume fraction of nodes, and MOF
density were the most important parameters for predicting the
self-diffusivity of DMMP in these MOFs. It was found that the
same model could be used to predict the diffusivity of sarin in
the same structures.
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Figure 11. The time interval (𝜏) is depicted over stored MD configurations. For each 𝜏 = i · Δt (i = 1 to n), squared displacements are calculated and
averaged to calculate the MSD at that i · 𝜏.

4.2.2. Thermal Conductivity

The thermal conductivity (𝜅) is another physical property that can
be calculated for MOFs using equilibrium NVE MD simulations
by analyzing an autocorrelation function:

𝜅 = V
kBT2 ∫

∞

0
⟨J (t) ⋅ J (t + 𝜏)⟩d𝜏 (5)

where V is the volume of the system, kB is the Boltzmann con-
stant, T is temperature, J is the heat flux vector, and the angular
brackets denote an ensemble average. J can be calculated as:

J (t) = d
dt

∑
i

riEi =
∑

i

(
viEi + ri

dEi

dt

)
(6)

where ri, Ei, vi are the position vector, energy, and velocity of the
i-th atom, respectively.[150,173–175] This calculation requires that
MOF framework flexibility is taken into account. As an exam-
ple, the thermal conductivity of IRMOF-1 has been studied us-
ing MD simulations between 200 and 400 K.[176] MD simulations
were performed on variously sized systems comprising 1, 8, and
27 unit cells. The findings pointed to a specious correlation be-
tween thermal conductivity and simulation system size. This un-
derscores the need for a sufficiently large system size to mini-
mize potential errors associated with smaller systems. The size
and shape of the pores of a MOF, together with the presence of
adsorbed molecules, can also influence the thermal conductiv-
ity. In a study that concentrated on idealized MOFs, it was found
that the thermal conductivity of MOFs with small pores decreased
in the presence of the adsorbed gas molecules.[177] However, the
presence of adsorbed gas molecules did not affect the thermal
conductivity of MOFs with large pores.

High-throughput calculations were performed by Islamov
et al. to calculate the thermal conductivities of 10 194 hypotheti-
cal MOFs.[178] The results showed that MOFs with four-connected
metal nodes, small pores, and high density have higher thermal
conductivities and that MOFs with extremely large pores are char-
acterized by ultra-low thermal conductivities. In addition, the in-
fluence of porous crystal flexibility (pore expansion, as a model
for MOF breathing transition) on thermal conductivity has been
studied in the presence of adsorbed gas.[179] The thermal conduc-
tivity was calculated for a range of structures from the completely
closed to fully open form. The study concluded that thermal con-
ductivity shifts only in accordance with the direction of crystal
expansion, irrespective of adsorbed gas presence. Interestingly,

this change in thermal conductivity is less noticeable when guest
molecules are present.

4.3. Models for Classical Molecular Simulations

Best practices, in general, for performing classical MD and
MC simulations have been extensively discussed in other
places.[150,180] In the field of MOFs, two components are partic-
ularly important for an accurate and high-quality simulation: the
MOF structure and the force field that describes the guest-host,
guest-guest, and intra-host interactions. In this subsection, we
discuss best practices for the preparation of MOF structures and
the selection of suitable force fields.

4.3.1. Crystal Structures

One of the most significant challenges in classical simulations
of MOFs and the phenomena occurring within their pores is the
accurate representation of their structure. The MOF structure for
molecular simulations can be either obtained from single-crystal
X-ray diffraction (XRD) experiments or constructed in silico. If an
experimentally resolved crystal structure is available, this is usu-
ally the best approach. Since MOFs are crystalline materials, this
sounds straightforward, but there are several challenges in prac-
tice. First, hydrogen atom positions cannot be obtained directly
from XRD, and hydrogen atoms are usually added using crys-
tallographic software. Placing the missing hydrogen atoms on
an aromatic ring is straightforward, but automated software may
struggle to make the correct assignment of whether an oxygen
atom is part of a hydroxyl group or a bound water molecule. For
example, the proton topology on the 8-connected Zr6O8 nodes
of MOFs like NU-1000 cannot be determined from diffraction
experiments. In this case, DFT calculations were used to iden-
tify the most stable configuration,[181] and this configuration has
subsequently been used in molecular simulations. Another chal-
lenge is that crystal structures may contain partial occupancies
and other forms of disorder, which must be “cleaned” before
the structure can be used for simulations. The presence of sol-
vent molecules within the crystal structure of MOFs presents
a significant challenge. During adsorption experiments, these
molecules may be eliminated in the activation process. Ideally,
an adsorption simulation should mirror these experimental con-
ditions accurately, which implies the removal of these solvent
molecules. However, confirming that each solvent molecule has
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Table 1. Summary of representative large MOF databases.

Database Year Structure type Number of structures Features

hMOF-Wilmer[50] 2012 Hypothetical 137953 Hypothetical structures for high-throughput materials discovery

CoRE MOF 2014[18] 2014 Experimental 5109 Curated and cleaned experimental structures ready for molecular
simulations

ToBaCCo[184] 2017 Hypothetical 13511 MOF structures with enhanced diversity in topology and pore size

CSD MOF subset[189] 2017 Experimental 69666 Reported to be the most complete collection of experimental
MOF structures, actively updated

MTV-MOFs[190] 2017 Hypothetical ≈10000 Multivariate MOFs with mixed linkers and functional groups

BW-DB[191] 2019 Hypothetical 325000 Database for accelerating the discovery and optimization of
materials for carbon capture

CoRE MOF 2019[17] 2019 Experimental 14845 Update of 2014 CoRE MOF database

hMOF-Lan[192] 2019 Hypothetical 303991 MOF structures with diverse channel types and enhanced
topology distribution

hMOF-Majumdar[193] 2021 Hypothetical ≈20000 MOF structures with enhanced structure diversity

QMOF[144] 2021 Hybrid 14000 DFT-optimized MOF structures

hMOF-Nandy[194] 2023 Hypothetical ≈50000 MOF structures with enhanced thermal and activation stability

indeed been eliminated during the experiments can be complex.
Furthermore, extracting these solvent molecules can trigger pore
collapse in MOFs, especially those with large mesopores. Conse-
quently, relying on “cleaned” structures in simulations might not
always accurately reflect the real activated material.

Databases of MOF structures from experiments have been
constructed in the past few years to facilitate molecular simu-
lations and high-throughput materials discoveries, as listed in
Table 1. Experimental MOF structures curated in these databases
usually undergo semi-automated processes. It is important to
note, however, that while these processes aim to clean the disor-
der and remove unwanted solvent molecules, their effectiveness
is not absolute. There may be instances where mis-bonded or iso-
lated atoms remain. As an example, Chen and Manz[182] found it
necessary to propose extra procedures to clean structures from
the 2019 CoRE MOF database[17] with such issues. Hence, users
of these databases should be aware of these limitations.

Alternatively, MOF structures can be constructed on the
computer from their constituent nodes and linkers using
available construction algorithms, such as AuToGraFS,[183]

ToBaCCo,[184,185] TOBASCCO,[186] and PORMAKE.[187] These
construction algorithms typically map the building blocks (nodes
and linkers) onto a topological blueprint, and building blocks
are connected through pre-defined connection points. The con-
structed structures are usually optimized using either a classical
force field, such as the Universal Force Field (UFF)[188] or DFT be-
fore they are fed into the simulation workflow. Due to the unique
combinatorial nature of MOF structures, the computational con-
struction method opens the door to the generation of an infinite
number of hypothetical MOF structures. This paradigm naturally
fits in with a high-throughput screening workflow and has accel-
erated materials discovery at an unprecedented speed.

4.3.2. Classical Force Fields for Adsorption Simulations

Most classical force fields are composed of a set of equations de-
scribing interatomic interactions such as bond stretching, bond

angle bending, dihedral angles, and non-bonded interactions.
The force field also includes the parameters in these equations.
The non-bonded interactions include attractive dispersive (van
der Waals) and repulsive interactions (often modeled with a
Lennard-Jones potential between all pairs of non-bonded atoms)
and long-range Coulombic interactions (often modeled by plac-
ing point charges on the atoms). For more details and the inner
workings of force fields in molecular simulations, we refer read-
ers to refs.[56,195]

One of the difficulties in developing a force field for MOF sim-
ulations is the enormous chemical diversity of these materials
and the wide range of potential applications. Ideally, a good force
field is both transferable and accurate. There are two main ap-
proaches for developing a force field. In the first, the parameters
are fitted against DFT or other quantum mechanical calculations
such as MP2 or CCSD. In this approach, the parametrization
process involves determining the parameters of the force field
that minimize the difference between the energies and forces
predicted by the force field and those calculated using quantum
mechanical methods. Often, the fit is performed using a set of
molecules and configurations that is representative of the system
of interest. This process can be complex and time-consuming, as
it involves iterative optimization of many parameters. Another
aspect to consider is that while this approach can lead to high ac-
curacy for the systems that the force field was trained on, its trans-
ferability —that is, its ability to accurately predict the properties of
systems that are not in the fitting set—is not always guaranteed.
Ensuring transferability is a major challenge in force field devel-
opment, requiring careful design of the functional form of the
force field and the selection of the training set. In the second ap-
proach, the force field is fitted so that the results match some ref-
erence experimental data such as adsorption isotherms and heats
of adsorption. A challenge for this approach is that there may be
differences in reported experimental data for a given system due
to different materials synthesis and activation strategies applied.
Another issue is that most simulations of adsorption in MOFs to
date have assumed a rigid framework structure. If the MOF ex-
hibits significant flexibility and the MOF is assumed rigid in the
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simulations, then fitting the force field to match experiment will
likely lead to an unreliable force field.

In practice, force fields in the MOF field are often not assem-
bled “from scratch” but by starting with existing force fields. The
most common approach is to employ a “generic” force field for
the adsorbent (i.e., a force field that was not developed specifi-
cally for MOFs) alongside a force field for the adsorbate taken
from previous work on bulk fluids. Simulations of vapor-liquid
equilibrium, including coexistence curves and saturation pres-
sures, serve as a rigorous assessment of the accuracy of fluid force
fields. Therefore, we strongly recommend the use of force fields
that have been tested to predict these quantities in good agree-
ment with experiment. An example of such a force field is the
Transferable Potentials for Phase Equilibria (TraPPE).[196] Often,
the UFF[188] or a combination of Dreiding[197] and UFF is used
for the framework. This could include equations and parameters
for treating MOF flexibility or simply taking the Lennard-Jones
parameters from these force fields and using them for the MOF
atoms, which are held fixed at their crystallographic coordinates.
Vandenbrande et al.[198] performed a benchmark analysis of the
accuracy of predicting methane uptake in Zr MOFs with both
generic force fields (UFF and a combination of UFF and Drei-
ding). They compared them to three more sophisticated force
fields: MM3-MBIS,[199] SAPTFF,[200,201] and MEDFF,[202] the lat-
ter two of which are purely ab initio derived. They concluded
that at moderate pressure, the generic force fields are reasonable
and can be used to predict quantities such as the working capac-
ity close to saturation pressure. Recently, an online adsorption
database, MOFX-DB,[203] was constructed to facilitate the use and
reproducibility of simulated gas adsorption data in nanoporous
materials. MOFX-DB contains simulated adsorption isotherm
data for more than 160 000 MOF and zeolite structures. All neces-
sary simulation input files are also available in the database to en-
hance the reproducibility of data. The simulated data in MOFX-
DB can help validate force fields parameters against experimental
data in a holistic manner.

Partial charges on the atoms can have a strong influence on
the predicted properties and behavior of the system. For the ad-
sorbate atoms, the partial charges are usually taken from the
force field used for the adsorbate (e.g., TraPPE). However, par-
tial charges for framework atoms are usually calculated for each
MOF as needed. As described in Section 3.5, framework charges
are often obtained from DFT. There are, however, a wide range
of empirical methods that can be used to calculate these charges
much faster than DFT. One of the first empirical methods de-
veloped for determining partial charges was the charge equi-
libration (QEq) method.[204] It is designed to compute partial
charges of atoms within a molecule, utilizing the molecular ge-
ometry and three atomic properties. These properties are the
ionization potential, which signifies the energy required to re-
move the outermost valence electron, the electron affinity, in-
dicating the energy variation associated with the addition of an
extra electron, and the atomic radius. These parameters can ei-
ther be derived from experimental findings or calculated through
ab initio methods. Many developments of this method were re-
ported in the literature, including extended (EQEq), which im-
proved the accuracy of metal cation charges (with the inten-
tion to apply in MOFs),[205] and the MOF electrostatic-potential-
optimized charge (MEPO-QEq) scheme, in which the parame-

ters (electronegativity and chemical hardness) were trained based
on DFT calculations for a group of 543 MOFs.[206] Ongari et al.
performed a benchmark analysis of Qeq and its derivatives, re-
vealing specific issues related to atom types and input parame-
ters in the assessment of 2338 MOFs.[207] Their study highlighted
that Qeq methods have not shown significant improvement in
accuracy over time. Since these methods are not computation-
ally expensive, they can be used in high-throughput screening
studies, although it is suggested to re-test the top-performing
candidates with simulations based on partial charges from
DFT.

In classical simulations of adsorption in MOFs, another im-
portant factor that can significantly influence the outcomes, is
the tail correction. It is a mathematical formula applied to com-
pensate for the truncation of long-range interactions in the sys-
tem. The tail correction and the chosen cutoff radius – the limit
beyond which interparticle interactions are neglected—can sub-
stantially affect simulation results. If a force field has been de-
signed with specific cutoff radii and with the consideration of the
tail corrections, these parameters should always be used to en-
sure the reliability of the results. Jablonka et al. demonstrated
that the homogeneous tail corrections tend to yield results that
are less affected by the cutoff radius, making them a preferable
option.[208] This conclusion is consistent across a wide range of
structures tested, including zeolites, metal-organic frameworks,
and covalent organic frameworks (see Figure 12 for details). Fur-
thermore, since there is no universal cutoff value for the poten-
tial, the study recommends the application of tail corrections
in modeling gas adsorption in microporous materials. This is
proposed to facilitate a more consistent and reliable compari-
son of results derived from different simulation studies. Note,
however, that there are certain force fields that were optimized
without tail corrections, and for these models, the application
of tail corrections may not be advisable.[209] Regardless of the
choice, all details of the simulation—including the cutoff dis-
tance and whether or not tail corrections were applied—should
be reported in publications reporting simulation results to ensure
reproducibility.

The lack of universal intramolecular force fields for MOFs is
the main challenge for considering flexible frameworks in MD
simulations. Nevertheless, there are some studies that concen-
trated on the effect of framework flexibility on the diffusion of
adsorbate molecules by implementing currently available force
fields such as UFF4MOF,[210] AMBER,[211] and CVFF[212] or us-
ing ab initio calculations to develop force field parameters for
specific MOF structures, as discussed in Section 3.5. The modi-
fied CVFF force field was used for a flexible UiO-66(Zr) MOF to
calculate the Ds of CH4 in CO2/CH4 mixtures at different CO2
loadings. Although Ds obtained by quasi-elastic neutron scat-
tering (QENS) was higher than the calculated Ds by a factor of
2.5, both experimental and simulation trends were similar at a
low loading of CO2.[213] The diffusion, adsorption, and separa-
tion of various molecules in a family of ZIFs have been studied
using equilibrium MD simulations and transition state theory
(TST) methods. Since ZIF frameworks, such as ZIF-8, have rela-
tively small pores, including framework flexibility in the simula-
tions is beneficial for obtaining accurate diffusion coefficients.
Certain force fields established through DFT calculations for
this set of structures demonstrated good accuracy in predicting
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Figure 12. Impact of the application of the tail correction on the absolute error in deliverable capacities of methane in porous materials (ΔDC = DC(rc)
− DC(rc = 24 Å)). Reproduced with permission.[208] Copyright 2022, American Chemical Society. Further permission requests related to this figure
should be directed to the ACS.

self-diffusivities and corrected diffusivities, aligning closely with
experimental findings.[214–221] In each of these studies, some in-
teresting physical insights about the relation between the diffu-
sivities and framework flexibility were described. It was shown
that the substitution of metal cation in the ZIF-8 framework, cre-
ating ZIF-67 (Zn to Co substitution), led to a notable enhance-
ment in ethylene/ethane separation efficiency. The metal varia-
tion appeared to govern the aperture size and stiffness, as con-
firmed by simulations.[73,221] In addition, simulation results in-
dicated that implementing different force field parameters led to
order of magnitude differences in diffusivities.[214–215,221] While
these simulations offer valuable insights into the behavior of flex-
ible MOFs, the significant disparities in diffusivities depending
on the choice of force field parameters underscore that current
simulation methods may not fully capture the complex inter-
play of framework flexibility and diffusive behavior, necessitat-
ing further refinement and validation of these models. Yang and
Sholl studied the importance of framework flexibility on the dif-
fusivities of 12 different adsorbates with different sizes, shapes,
polarities, and flexibilities in 17 different MOFs.[222] UFF4MOF
was used for flexible and rigid frameworks. In many examples,
simulations with rigid frameworks underestimated the diffusiv-
ity of molecules in MOFs with small pores. The results demon-
strated that the correlation between the flexibility of the frame-
work and diffusivity depends on the size of the pore and the ad-
sorbate. When the size difference between windows and adsor-
bate is greater than 4 Å, the flexibility of the framework has a
small influence on the diffusion. However, the effects of diverse
functional groups, metals, and linkers on the mobility of vari-
ous flexible ZIF MOFs and the diffusivity of adsorbate molecules
are complex. To address this issue, ML methods were used on
14 different adsorbates in 72 existing and hypothetical flexible
ZIFs with SOD topology.[223] The trained ML approach uses sim-
ple, readily available input information to train predictive mod-
els that bypass extensive computational steps and directly esti-
mate the diffusivity of penetrants in newly functionalized ZIF-8
variants.

The breathing behavior of some MOFs has been studied
using MD simulations. For example, the flexible MIL-47(VIV)

was investigated using the CVFF force field. MD simulations
were conducted at 300 K and at a variety of external hydro-
static pressures up to 350 MPa. The simulation results demon-
strated the phase transition in MIL-47 under diverse pres-
sure range is in good agreement with X-ray powder diffrac-
tion results.[224] Framework breathing was also studied in the
presence of adsorbates at different loadings.[225,226] Using NVT
and NPT MD simulations, along with GCMC simulations, the
flexible IRMOF-74-V was studied with Ar as an adsorbate, us-
ing the CVFF force field. The results successfully predicted the
deformation of the MOF, aligning with experimental adsorp-
tion and X-ray diffraction data.[225] In the second report, MD
simulations were utilized to explore the breathing behavior of
the flexible MIL-53(Cr) across a range of CO2 uptakes. The
predicted unit cell parameters for MIL-53(Cr) exhibited excel-
lent agreement with the results from in situ X-ray diffraction
experiments.[226]

In addition, it is worth mentioning a distinctive and transfer-
able forcefield, VMOF, that was developed specifically for metal-
organic frameworks to accurately determine a broad range of
properties related to lattice dynamics, such as phonon spectra,
thermodynamic and mechanical properties, free energies, heat
capacities, and bulk moduli.[227] This approach, tested on MOFs
such as IRMOF-1, UiO-66, and MOF-74, can help facilitate high-
throughput computational screening of vibrational properties
across a diverse range of MOFs.

4.4. Machine Learning Methods to Facilitate Classical
Simulations

Recent advances in machine learning are providing new routes
to solving some of the most challenging problems in classical
molecular simulations. In this subsection, we discuss two recent
notable ML developments for molecular simulations of MOFs,
i.e., ML force fields and using ML to obtain partial charges. These
developments help tackle the traditional tradeoff between com-
putational expense and accuracy of the simulation. Current chal-
lenges and future directions are also discussed.
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Figure 13. Comparison of classical force fields and machine learning potentials.

4.4.1. Machine Learning Force Fields

The purpose of a force field is to accurately reproduce the poten-
tial energy surface of a system (Figure 13). As described above,
classical force fields can be obtained by fitting the potential en-
ergy surface obtained from ab initio calculations to a certain func-
tional form. The functional form can be physically rigorous, such
as the Coulombic potential, or it can be semi-empirical, such as
the 12-6 Lennard Jones potential, where the (1/r)6 term was de-
rived from London dispersion forces, but the (1/r)12 term was
chosen for convenience to approximate Pauli repulsion. Restric-
tion to a pre-defined functional form may limit its applicability to
describe certain effects, such as possible quantum diffraction ef-
fects, many-body interactions, and reactions, where special treat-
ments are needed.

With the capability to approximate any functional form, ML
models, such as neural networks[228] and Gaussian process
regression,[229] have been developed to predict the potential en-
ergy surface of a system with the accuracy of DFT but much
faster. Figure 13 shows a comparison between classical force
fields and ML potentials. For a standard ML potential model, the
general idea is that by training the ML model with data points
from quantum mechanical calculations, the ML model is able to
predict the system energy and atomic forces with ab initio level
accuracy, based on the local environment of each atom as input.
ML potentials inherently account for any quantum effects, many-
body effects, and possible chemical reactions that are encoded in
the ab initio training data.

ML potentials have become prevalent in the past few years
largely due to the availability of user-friendly software and
tools[228,229] and increased computational power to generate a
large amount of reliable ab initio training data. ML potentials for
MOF systems have appeared very recently. To accurately model
molecular diffusion in flexible MOFs, Achar et al.[230] developed a
hybrid simulation scheme by applying different modeling strate-
gies to guest-guest, guest-host, and intra-host interactions. They
developed a ML potential to describe the intra-host interactions
for UiO-66, while for guest-guest and guest-host interactions, a
conventional LJ potential was retained to reduce the computa-
tional expense. They found that this hybrid modeling scheme can
reliably account for the motion and flexibility of the MOF struc-

ture in response to the presence of adsorbate molecules such
as Xe and Ne. In their work, they applied a two-phase training
scheme, with the first stage focused on training the model to ac-
curately predict the energy-volume response, and with the sec-
ond stage focused on generating structures at elevated temper-
atures to explore more of the configurational space of the ma-
terials. Indeed, how to efficiently generate training data for ML
potential model development is still an open question. Vanden-
haute et al.[231] built an incremental learning workflow to train a
ML potential for framework materials. The workflow implements
an on-the-fly training strategy for the ML potential, with training
data iteratively collected from parallelized quantum mechanical
and metadynamics simulations. The metadynamics component
in the workflow helps to explore the free energy landscape and
learn the structural phase space of flexible MOFs in a more ef-
fective manner. With only a few hundred single-point DFT eval-
uations per material, an accurate and transferable ML potential
based on an equivariant neural network was obtained. Similarly,
guest-host interaction energies can also be predicted by ML po-
tential models. Yang et al.[232] developed a deep ML model to learn
the potential energy surface of guest molecules near a framework
structure. Their model takes the transformed distance between
adsorbate molecules and the framework as input features and
predicts the guest-host energies with DFT level accuracy. They
validated their ML potential by comparing computed Henry’s co-
efficients using the ML potential and a reference force field fitted
against the DFT data in their previous work.[233]

The development of ML potentials for MOF systems is still
in its infancy. Further research in this area is necessary to solve
several outstanding challenges. For example, compared to classi-
cal force fields where the functional forms are physically mean-
ingful, an ML potential works as a black box. Building an inter-
pretable ML potential is still an ongoing goal in the field. In ad-
dition, most of the current ML potentials use each atoms’ local
environment (within a certain cut-off) as input features. A full
understanding of how the long-range interactions are accounted
for and what role they play in controlling the system properties is
still lacking.[234,235] Regarding the transferability of ML potential
models across different material types, several research groups
have attempted to develop so-called foundational or universal
ML potentials, such as ANI-1,[236] MEGNet,[237] M3GNet,[238] and
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CHGNet.[239] Yu et al.[240] applied the MEGNet model to predict
the mechanical properties of defective MOFs. However, whether
these universal models can be reliably applied to MOF mate-
rials in general is still unclear. Future efforts could be focused
on systematic benchmarking of existing universal ML potentials
against classical force fields (e.g., UFF4MOF[241]), reference ab
initio data, and experimental results.[242] It would also be bene-
ficial to develop a new universal ML potential model for MOF
materials or fine-tune existing models using MOF training data.
Finally, we note that molecular simulations using ML potentials
are generally slower than those using classical force fields. How-
ever, they are well suited for GPUs, and simulation codes that
use GPUs may be very helpful in expanding the usage of ML
force fields. These efforts should allow researchers to simulate
systems at larger spatial and time scales at DFT-level accuracy.

4.4.2. Partial Charges from Machine Learning

Partial charges, as discussed above, can be calculated through
two main approaches: DFT calculations and empirical methods.
DFT, while highly accurate, tends to be time-consuming. Empiri-
cal methods, on the other hand, are faster, but they are sometimes
less accurate. ML presents an elegant solution that has the poten-
tial to predict partial charges for MOFs with DFT-level accuracy,
yet with significantly reduced computation time. Zou et al. de-
veloped the multilayer connectivity-based atom contribution (m-
CBAC) method,[243] which assigns charges based on averaging
the DDEC charges for atom types with the same connectivity pat-
tern. It is based on the CBAC method,[244] but it is trained on a
significantly larger set of MOFs (2700 versus 43) and uses three
layers of connectivity instead of one (0—central atom, 1—central
atom and nearest neighbors, 2—central atom, nearest neighbors,
and 2nd nearest neighbors). When assigning a charge to a target
MOF atom, the system first searches for the 2nd nearest neighbor
connectivity pattern, which provides the most accurate charge as-
signment. If this is unavailable, it moves to the 1st and then the 0th

layer, which is less accurate but broadly applicable. The method
was also tested for accuracy by predicting CO2 Henry’s constants
for MOFs not included in the training set and demonstrated bet-
ter accuracy compared to the EQeq method. Charges assigned
using the m-CBAC approach were discovered to closely mirror
DDEC charges, as indicated by a Pearson correlation coefficient
of 0.99. The computational resources needed for this approach
are comparable to those of the EQeq method, but substantially
lower than those required for DFT calculations. Raza et al. created
and trained a message passing neural network (MPNN) to learn
representations of local bonding environments within MOFs and
to predict the partial charges on the atoms of a MOF under a
charge neutral constraint.[245] The crystal structure of the MOF,
represented as an undirected graph with node features encod-
ing the chemical elements, is directly inputted into the MPNN.
The MPNN builds features of the local bonding environments by
passing information between bonded atoms. It was trained and
evaluated using 2266 MOFs with DDEC-assigned charges. The
MPNN predicts the partial charges with a mean absolute devia-
tion from DDEC charges on the test set of 0.025, while requiring
significantly less computational time than performing electronic
structure calculations to derive the charges.

Kancharlapalli et al. proposed another ML method, referred
to as PACMOF, for predicting partial charges trained using
a random forest algorithm based on 950 MOFs with DDEC
charges.[246] In addition to local bond environment features, they
also considered elemental properties such as ionization poten-
tial and electronegativity, which ensured good accuracy (MAD =
0.026, correlation coefficient= 0.99). The model was validated us-
ing a different set of MOFs comparing not only charges but also
the simulated adsorption isotherms.

Partial charges, while not an experimental observable, play
an important role in classical force field descriptions of the en-
ergetic interactions in MOFs. Therefore, comparing adsorption
isotherms generated using ML-generated partial charges forms
an essential part of the evaluation and refinement of different
methodologies for determining partial charges. CRAFTED is a
database of simulated isotherms that explores the impact of dif-
ferent force fields and charge methods (including PACMOF and
MPNN) on CO2 and N2 adsorption in MOFs.[247] Burner et al. re-
ported REPEAT charges for about 280000 experimental and hypo-
thetical MOFs,[248] and this database also provides extensive and
diverse training and testing data for building new ML models for
partial charge prediction.

5. Conclusions

This review has provided an overview of the essential role of
computational research in understanding MOF properties and
phenomena by focusing on three widely used molecular model-
ing methods: density functional theory, Monte Carlo simulations,
and molecular dynamics simulations. We explored the proper-
ties that can be calculated from DFT, examining the distinctions
between periodic and cluster methodologies and to which prob-
lems they can be applied. We emphasized the importance of DFT
as a standard method for conducting the initial steps of simula-
tions involving MOFs, such as accurate geometry optimization
or generating partial charges, for subsequent studies employing
classical methods. Moreover, we discussed the problem of frame-
work flexibility and demonstrated how DFT can aid in predicting
structural transformations and thermodynamic properties using
energy-volume relations and phonon analysis. We also explored
the potential of cluster models of metal nodes in MOFs for under-
standing the nature of host-guest interactions and catalytic reac-
tions. Additionally, we discussed accessible and efficient methods
for generating ab-initio derived force fields, which hold signifi-
cant promise for applications in classical simulations. In conclu-
sion, DFT can be appreciated from two distinct perspectives: as a
valuable tool for conducting an initial analysis of MOF structures
prior to subsequent simulations and as a method capable of elu-
cidating phenomena not encompassed by classical approaches.
This dual functionality highlights the versatility and significance
of DFT in the field of MOF research and its vital role in driving
progress and deepening our understanding of these remarkable
materials.

For classical simulations, we discussed the importance of force
field selection for simulations of adsorption and diffusion. We
highlighted the available databases of materials suitable for high-
throughput screening and addressed potential challenges that
may arise. The classical methods of MD and MC are comple-
mentary. MD is particularly useful for investigating dynamic
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processes such as diffusion, conformational changes, and the re-
sponse of materials to external forces. For instance, MD sim-
ulations can predict diffusivities of various adsorbates within
the MOF, shed light on diffusion mechanisms and pathways,
and monitor changes in MOF or adsorbate structures over time.
Importantly, MD simulations can account for the flexibility of
MOFs, revealing how structural fluctuations may affect proper-
ties such as stability and phase transitions and provide insights
into how MOFs deform under external stresses or during ad-
sorption/desorption processes. On the other hand, by employing
a stochastic approach, MC simulations can efficiently explore a
wide range of configurations, making them well-suited for ad-
sorption simulations to predict isotherms and heats of adsorp-
tion. Together, MD and MC simulations offer a comprehensive
way to explore MOF behavior, encompassing both dynamic and
equilibrium properties. By combining the strengths of these two
methods, researchers can gain a more complete understanding
of the mechanisms and phenomena occurring in MOF structures
and hence design new materials with tailored properties for var-
ious applications.

Machine learning techniques are playing an increasing role in
both quantum chemical and classical modeling, allowing high-
accuracy predictions at reduced computational costs. Within the
context of DFT, ML methods can predict oxidation and spin
states. Additionally, ML techniques can monitor geometry opti-
mizations to ensure convergence to meaningful resulting struc-
tures. Within the realm of classical simulations, ML methods
can be employed to achieve high-accuracy interaction models
through ML force fields and by predicting ab initio quality partial
charges. Furthermore, these techniques can assist in screening
databases to determine the water and thermal stability of MOFs
and can be trained to predict other properties of interest.

As MOF research continues its rapid evolution, modeling and
simulation strategies need to evolve in parallel. An important
challenge is the inherent flexibility of MOFs, which is routinely
overlooked or inadequately addressed in simulations, in particu-
lar in the field of adsorption. The importance of flexibility spans
from small changes such as the lability of modulators and rota-
tion of polar functional groups in zirconium MOFs, which can
impact the strength of adsorption of small molecules, to the ro-
tation of the linkers that might facilitate diffusion and packing of
guest molecules. Larger-scale structural flexibility of MOFs, ex-
emplified by phenomena such as breathing associated with sig-
nificant volume changes, presents a challenge for standard ad-
sorption simulation protocols. Within these challenges naturally
lie opportunities. The immediate frontier is to integrate MOF
flexibility within the simulation protocols. Classical force fields
can be refined and expanded upon to better capture these dy-
namics. Moreover, with the advancement of ML techniques, there
is a significant promise in developing universal ML potentials
for MOFs that can account for framework flexibility and MOF-
adsorbate reactivity with the accuracy of quantum methods. By
leveraging such methodologies, and with the aid of modern com-
putational advancements like GPU acceleration, there is poten-
tial to achieve an unprecedented level of accuracy in predicting
MOF behavior under various conditions.

Over the past two decades, computational tools have played a
pivotal role in MOF research, facilitating the rapid development
and characterization of new MOF materials for specific applica-

tions. As we move forward, the next frontier for MOF modeling
is not merely about refining simulations but delving deeper to
understand the behavior of these materials under diverse condi-
tions. The growing accessibility and reliability of computational
methods, from density functional theory to Monte Carlo and
molecular dynamics simulations, combined with the integration
of novel ML techniques and advanced computational resources,
are set to redefine the landscape of MOF research. Through this
review, we aim to ease the transition of these computational mod-
eling techniques into the toolkits of emerging researchers in the
exciting field of MOF research.
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