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ABSTRACT: Activating the C−H bond in methane represents a cornerstone
challenge in catalytic research. While several supported metal oxide nanoclusters
(MeO-NCs) have shown promise for this reaction, their optimal composition
remains underexplored primarily due to the large number of possible compositions
and their amorphous nature. This study addresses these challenges using
computational approaches. Leveraging density functional theory (DFT)
calculations, we began with a previously studied supported tetra-copper oxide
nanocluster and systematically substituted its Cu sites with first-row transition
metals (Mn, Fe, Co, Ni, and Zn). This process allowed us to examine the catalytic
activity of 162 MeO-NCs with a variety of geometric and electronic structures,
leading to 12 new compositions that outperformed the base nanocluster. Exploring the structure−activity relationships with machine
learning, our analysis uncovered correlations between the intrinsic electronic and structural properties of the nanoclusters and the
free energy barriers for methane activation despite the challenges posed by the structural flexibility of these amorphous nanoclusters.
The results offer insights into the optimization of MeO-NCs for methane activation. Additionally, we developed a clustering model
capable of distinguishing high-performing nanoclusters from less effective ones with strong tolerance to the interference from the
structural flexibility of these amorphous nanoclusters. These findings help narrow down the material design space for more time-
consuming high-level quantum chemical calculations, offering a promising pathway toward advancing eco-friendly methane
conversion.
KEYWORDS: catalysis, density functional theory, machine learning, oxidation, material discovery

1. INTRODUCTION
Methane, the principal component of natural gas, holds
significant potential as a chemical feedstock due to its high
abundance.1 The direct combustion of methane releases
carbon dioxide, a greenhouse gas, exacerbating global climate
change concerns. Thus, there is a pressing need to utilize
methane in a greener manner. For instance, converting
methane to liquid products like methanol not only facilitates
easier transportation but also offers a pathway to value-added
chemicals.2−4 However, methane activation, the initial step for
methane conversion, is intrinsically challenging. The C−H
bonds in methane, with a bond energy of 435 kJ/mol,5 are
among the strongest in hydrocarbons. Consequently, the
development of efficient catalyst materials for methane
activation remains critical in energy and chemical research.
Metal oxide nanoclusters (MeO-NCs), especially those

based on copper and supported within metal−organic
frameworks (MOFs) and zeolites, have recently garnered
significant attention in the realm of methane activation. For
instance, Lercher et al. efficiently converted methane to
methanol under mild conditions using a series of mono- and
dicopper oxide nanoclusters dispersed on specific MOFs and
zeolites.6−10 The structures of these Cu-oxo motifs have been

systematically characterized by using multiple tools such as
EXAFS and XANES, and their kinetic behaviors across the full
catalytic cycle of methane-to-methanol conversion have been
examined. Romań-Leshkov et al. also showcased the excep-
tional capability of [Cu−O−Cu]2+ motifs within copper-
exchanged zeolites for continuous and selective conversion of
methane to methanol.11,12 Moreover, several theoretical
studies have delved into the catalytic mechanisms of Cu-oxo
moieties for this reaction.13−17 These pioneering studies
highlight the promise of copper oxide nanoclusters in efficient
methane activation and conversion and also provide solid
foundations for studying variants of copper oxide nanoclusters.
One way to build on the work to date on copper oxide

nanoclusters is to explore other compositions.18,19 Challenges
arise from a limited understanding of the complex structure−
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property relationships, which hinders the rational design of
nanoclusters. Further complicating the matter is the vast
potential material design space, making a “brute force”
exploration of all possible compositions and configurations
an undesirable path. Moreover, the dynamic behavior of
nanoclusters under the reaction conditions often results in
amorphous structures. These structures may be characterized
by a large number of local minima on the potential energy
surface, influencing their catalytic activity and stability. Thus,
realizing the full promise of MeO-NCs for methane activation
and other reactions necessitates overcoming these intertwined
challenges.
First-principles calculations at the level of density functional

theory (DFT) have been used extensively to quantify
structure−property relationships at the atomic scale, enabling
researchers to predict and elucidate the catalytic behaviors of
nanoclusters with sufficient accuracy at a reasonable cost.20,21

On another front, machine learning excels at uncovering
intrinsic correlations between various properties,22−25 facilitat-
ing deeper insights into DFT-computed data sets. Combining
DFT and machine learning methods is a promising strategy for
accelerating progress in the design and discovery of new
catalysts and improving our understanding of their function.
This may be particularly beneficial when potential materials
reside beyond the established boundaries of our existing
chemical knowledge.
Our previous research systematically examined the coordi-

nation environments, configurations, and catalytic behaviors of
various supported di- and tetra-copper nanoclusters for
methane activation.26−28 It is envisioned that these well-
defined nanoclusters could be synthesized by atomic layer
deposition (ALD) on supports containing isolated −OH
groups using the experimental procedure outlined by Avila et
al.,29 and our DFT thermodynamic analysis28 supports the
feasibility of their synthesis. These nanoclusters are, thus,
members of an extended class of possible nanoclusters of
varying numbers of metal atoms and varying composition.
Herein, we selected a representative tetra-copper oxide

nanocluster from our previous work28 as a starting point. This
cluster’s activity in methane activation was confirmed using
DFT transition state calculations. The chosen cluster features a
tricoordinated oxygen site surrounded by three Cu sites,
labeled M1, M2, and M3, with a fourth Cu site positioned
further from the oxygen (see Figure 1 and Section 1 in the
Supporting Information). The stability of this configuration
under practical conditions (200 °C) has been corroborated by
ab initio molecular dynamic (AIMD) simulations, ensuring a
solid base for further modifications. Here, we substituted the
three Cu sites with six different first-row transition metals (Mn,
Fe, Co, Ni, and Zn), resulting in 216 distinct MeO-NCs (6 × 6
× 6 = 216). Each structure is named according to the metal
types at the M1, M2, and M3 sites. For instance, the base
nanocluster is termed CuCuCu (Figure S1). We performed
these strategic substitutions with the aim of reducing the free
energy barrier associated with methane activation at the
tricoordinated oxygen site. After investigating methane
activation on these nanoclusters using DFT, we employed
supervised machine learning algorithms to find correlations
between the structural and electronic properties of the reactant
cluster and the free energy barriers for methane activation. We
also used an unsupervised machine learning clustering
algorithm to classify the nanoclusters into two distinct groups:
one for the high-performing nanoclusters and one for the less

reactive nanoclusters. This approach can be expanded in the
future to efficiently screen out less promising nanoclusters�
for example, with other metals or larger sizes�reducing the
number of computationally intensive transition state (TS)
calculations and narrowing the material search space.

2. COMPUTATIONAL DETAILS
2.1. DFT Calculations. All DFT calculations for the MeO-

NC models were implemented using Gaussian 16.30 We
optimized geometries, computed vibrational frequencies, and
searched for transition states using the M06-L functional31

with ultrafine integration grids. Carbon, hydrogen, and oxygen
were modeled using the def2-SVP basis set,32 while transition
metals were represented with the def2-TZVP basis set33 and its
corresponding effective core potential. This choice of func-
tional and basis sets is known for its balance of accuracy and
computational cost, as evidenced by previous studies on MeO-
NC systems,6,26−28,34 where it provided accurate geometric
and electronic structure insights. The accuracy of the def2-SVP
basis set was validated through test calculations comparing the
free energy barriers of methane activation for five test systems
using the more accurate def2-TZVP basis set for all of the
atoms. The results, shown in Table S1, closely align with our
original calculations. This confirms the reliability of using the
def2-SVP basis set in our study. Additionally, we incorporated
the D3 dispersion correction with zero damping to account for
dispersion forces.35

To investigate magnetic couplings, we explored potential
high spin (ferromagnetic), ferrimagnetic, and antiferromag-
netic broken symmetry states for CuCuCu, CoMnFe,
CuZnFe, CuZnNi, and FeFeZn as test cases. The results
revealed a preference for ferromagnetic coupling in most cases,
with CuZnNi being the only exception, where the
ferrimagnetic state is marginally more stable (by 0.03 eV)
than the ferromagnetic state (Figure S2 and Table S2). These
findings are consistent with previous studies on the magnetic
couplings in copper oxide nanoclusters and nanopar-
ticles.26,36−38 Accurately examining all possible spin states for
all 216 MeO-NCs would require a prohibitive amount of
computing resources. To make this study feasible, we adopted
ferromagnetic couplings for all of the MeO-NCs. We carefully
examined a range of possible spin multiplicities during
geometric optimization to determine the ground spin state,
as detailed in Table S3.
The nature of all stationary points on the potential energy

landscape, including both minima and transition states, was
confirmed through harmonic vibrational analysis, which was
also used to calculate the thermal corrections. To estimate the
Gibbs free energy, we considered thermal and entropic factors
derived from vibrational frequency analysis using the harmonic
oscillator model. We adjusted frequencies under 50 cm−1 to a
standard value of 50 cm−1, to maintain the validity of this
model at low frequencies.39,40 For all nanoclusters and bound
species, we intentionally disregarded the translational and
rotational contributions to mimic the behavior of the solid-
state species.

2.2. Sure Independence Screening and Sparsifying
Operator (SISSO) method. We employed the SISSO
algorithm41 to establish the mathematical relationship between
free energy barriers and input electronic and geometric
features. SISSO is a powerful tool capable of uncovering the
mathematical correlations between a set of input features and
target properties by employing a framework rooted in
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compressed-sensing-based dimensionality reduction. Within
the framework of supervised learning tasks in this study, SISSO
operates in several key steps. First, the SISSO algorithm
constructs a feature space by combining features using specific
mathematical operators, namely, Ĥ(m) � {I, +, −, ×, ÷, log,
exp, exp−, −1, 2, 3, 6, √, | |, sin, cos}. Only combinations that
make physical sense, such as those involving features with
compatible units, are retained and are indicated by the (m)
notation. By employing these operators, a wide array of
nonlinear expressions emerges from the amalgamation of
features and mathematical operations, creating an expansive
candidate space for subsequent analysis. In this study, the
feature complexity parameter within SISSO is set to 3, which
determines the size of the feature space selected by the
algorithm. This setting aims to identify the most relevant
features that correlate with the target property of interest. By
setting it to 3, we achieve a balance between model complexity
and computational efficiency, ensuring that the selected
descriptors are optimally representative without excessively
consuming computational resources. The descriptor dimension
is also set to 3, allowing descriptors to use up to three terms.
Under these settings, the average time to generate the one-
dimensional (1D), two-dimensional (2D), and three-dimen-
sional (3D) mapping equations in this study was notably fast,
at 0.01, 0.13, and 76.75 s, respectively.
Next, the sure independence screening (SIS) technique,

known for its effectiveness in feature selection, is applied. It
ranks the descriptors by assessing their correlation with the
target property and screens them based on their independence
from the target variable. This process results in the selection of
a subset of descriptors that demonstrate strong correlations
with the target variable. Following the SIS stage, a sparsifying
operator (SO) is introduced to further encourage sparsity in
the descriptor space. The SO encourages most of the
descriptor coefficients to approach zero or become zero,
effectively reducing the dimensionality of the problem. This
reduction in dimensionality helps streamline the analysis and
enhances the efficiency of the model. The models’ predictive
accuracy and error margins were assessed via Pearson
correlation coefficients (r) and root-mean-square errors
(RMSE).

Unlike black-box machine learning methods like artificial
neural networks, SISSO can reveal mathematical mappings that
may provide human-understandable physical insights, making
it valuable for finding meaningful descriptors in physical and
chemical applications. It differs from other symbolic regression
techniques like genetic algorithms and random search by
conducting an exhaustive search of the solution space, reducing
bias, and yielding low-complexity descriptors that are robust to
data noise. More importantly, SISSO excels at handling smaller
training data sets, effectively addressing the overfitting
challenges often encountered with small-data-based ML
predictions. This sets it apart from many ML algorithms that
typically require extensive data to achieve reliable perform-
ance,42,43 making it a suitable choice for this study.

2.3. Principal Component Analysis (PCA). The visual-
ization of the clustering outcomes employs the PCA method,44

a well-established algorithm for reducing data dimensionality.
It projects multidimensional input features onto a two-
dimensional plane, thereby simplifying the depiction of the
results. The essence of PCA involves converting features from
an n-dimensional space to a reduced k-dimensional space,
termed principal components. For instance, consider a data set
X = {x1, x2, x3, ···, xn}, which we aim to reduce to k dimensions.
The process begins by centering the data, a step involving
subtraction of the mean. Subsequently, we calculate the
covariance matrix using the formula XX

n
T1 . Following this, we

determine the covariance matrix’s eigenvalues and eigenvectors
through eigen decomposition. The eigenvalues are then
arranged in descending order, with the top k values being
selected for further processing. Corresponding to these top k
eigenvalues, an eigenvector matrix P is formed with these
eigenvectors as its rows. Ultimately, the original data set is
transposed into a new dimensionality defined by these chosen
eigenvectors, expressed as Y = PX.

2.4. Balanced Iterative Reducing and Clustering
Using Hierarchies (BIRCH) Method. In this work, we
utilized the balanced iterative reducing and clustering using
hierarchies (BIRCH) algorithm45 for data clustering imple-
mented using Scikit-learn.46,47 BIRCH, known for its
effectiveness in clustering relatively small to medium-sized

Figure 1. Schematic illustration of the substitution of the three Cu sites (labeled as M1, M2, and M3) surrounding the tricoordinated active oxygen
site (highlighted in yellow at right), aiming to enhance methane activation, with emphasis on the homolytic and heterolytic pathways. Note that the
−OH group at the bottom of the cluster represents the location where the cluster connects to the underlying support. Previous work26 has
validated that the catalytic site at the top of the cluster is sufficiently far from the support that the support may be neglected in the DFT
calculations. White, red, golden, and light peach spheres represent H, O, Cu, and Al atoms, respectively.
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data sets, was chosen for its capability to handle noise in the
data.
We applied the BIRCH algorithm as implemented in Scikit-

learn, adhering to the default settings. These settings include a
threshold value of 0.5, which determines the maximum radius
of subclusters in the CF (Clustering Feature) tree, and a
branching factor of 50, which dictates the number of child
nodes in the tree. The algorithm operates in a two-step
process: initially constructing a CF tree by dynamically
adjusting clusters and then performing a global clustering
phase on the leaf nodes of the CF tree.

3. RESULTS AND DISCUSSION
3.1. Catalytic Activity Evaluation and Mechanism

Preference. For each of the 216 MeO-NCs, we identified its
ground spin state by evaluating the energies across possible
ferromagnetic spin multiplicities and opting for the one with
the lowest energy, as listed in Table S3. The catalytic activity of
each MeO-NC was characterized by its free energy barrier for

activating the C−H bond along two widely accepted
mechanisms:48−50 homolytic and heterolytic. As depicted in
Figure 1, in the homolytic pathway, also known as hydrogen
atom transfer (HAT), a C−H bond in methane dissociates
homolytically, releasing a hydrogen atom to the active oxygen
site and leaving a CH3 radical with an unpaired electron.
Alternatively, the heterolytic pathway involves a proton-
coupled electron transfer (PCET) process, cleaving the C−H
bond heterolytically. This process transfers a proton to the
active oxygen site, simultaneously directing the negatively
charged methyl species toward bonding on one of the three
adjacent metal sites, which acts as a Lewis acid center. Our
previous studies,27,28 combined with other studies,51−53

highlight the need to consider both mechanisms when
evaluating methane activation on MeO-NCs.
For each of the clusters, we computed the free energy

barriers for methane activation along the homolytic pathway,
represented as ΔGhomo‡ , and the three heterolytic pathways,
with CH3 bonding to M1 (ΔGheter−Md1

‡ ), M2 (ΔGheter−Md2

‡ ), and

Figure 2. (A) Percentage of MeO-NCs favoring the homolytic pathway and the three heterolytic pathways. (B) Radar chart illustrating the
percentage of each type of transition metal in the M1, M2, and M3 sites, comparing those favoring homolytic versus heterolytic pathways. Violin
plots illustrating the distribution of (C) ΔGhomo‡ , (D) ΔGheter−Md1

‡ , (E) ΔGheter−Md2

‡ , and (F) ΔGheter−Md3

‡ on the tricoordinated oxygen site based on
metal types at the M1 (yellow), M2 (green), and M3 (blues) sites. In the violin plots, the mean values are denoted by ×, while the quartile lines are
represented by black dashed lines. The ΔGhomo‡ value for CuCuCu (139 kJ/mol) is marked with a red dashed line.
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M3 (ΔGheter−Md3

‡ ) sites. These calculations were based on TS
calculations at 200 °C, a standard temperature for experimental
methane activation.54 Progressing to the evaluation of each
nanocluster, we determined the minimum of the four free
energy barriers (ΔGmin‡ ) to assess the catalytic activity. Of the
216 MeO-NCs considered, 54 were found to be unsuitable for
further analysis due to significant structural changes when
exposed to methane. As shown in the percentage distribution
of transition metals at the M1, M2, and M3 sites (Figure S3),
these unstable structures are slightly more likely to contain Fe
or Zn. The observed structural changes include proton transfer
among peripheral water or OH groups and the breaking of one
of the three bonds connecting the active oxygen site to
adjacent metal sites upon interaction with methane. These
changes indicate that such nanoclusters cannot be easily
stabilized at their initial configuration in a methane-abundant
environment, making it challenging to reliably estimate their
methane activation barriers. Consequently, our focus shifted to
the remaining 162 MeO-NCs (Table S4 and Figures S4−S6).
Among them, 12 stood out for having a lower ΔGmin‡ than the
base material CuCuCu, which has a value of 139 kJ/mol.
Remarkably, the best performer, CuZnNi, showed a ΔGmin‡ of
113 kJ/mol. Delving deeper into the atomic makeup of these
12 high-performing clusters, we noticed a recurring presence of
Cu atoms: 9 of the 12 nanoclusters contained at least one Cu
atom at the M1, M2, or M3 sites. This pattern supports previous
interest in using copper-based nanoclusters for methane
activation. Interestingly, a notable synergy was observed in
the nanoclusters combining Cu and Zn, as half of these top

clusters, including the three most efficient ones, CuZnNi,
CuZnFe, and CuCoZn, comprised CuZn combinations.
Building on these insights, we then turned our focus to

examine the clusters’ preference for homolytic versus
heterolytic pathways in methane activation. As depicted in
Figure 2A, our analysis revealed that 20.4% (33 of 162) of
these MeO-NCs preferred the homolytic pathway. In
comparison, 10.5% (17 of 162) favored the heterolytic
pathway with CH3 bonding on the M1 site, 15.4% (25 of
162) on the M2 site, and a substantial 53.7% (87 of 162) on
the M3 site. This marked preference for the M3 site can be
attributed to its tricoordinated nature, in contrast to the tetra-
coordinated M1 and M2 sites. As one might expect, less
coordinatively saturated metal sites are more inclined to bond
with CH3. Interestingly, among the 33 MeO-NCs that favor
the homolytic pathway, the proportion of Cu atoms at the M1,
M2, and M3 sites of these MeO-NCs is 31%, which is higher
than that of Zn (23%) and significantly exceeds the fractions of
the other transition metals (Figure 2B). Also, when M1, M2,
and M3 contain two or three Cu atoms, the reaction tends to
favor the homolytic pathway. These statistical results imply
that Cu-containing nanoclusters have a predisposition for the
homolytic pathway, which is consistent with the observations
made for various mono- and dicopper nanoclusters.26−28 In
comparison, when focusing on MeO-NCs that favor the
heterolytic pathways, the distribution among Mn, Fe, Co, and
Ni showed no distinct bias (Figure 2B).
Figure 2C showcases the distribution of ΔGhomo‡ values

across the 33 MeO-NCs favoring the homolytic pathway,
segmented by the metal types at the M1, M2, and M3 sites.

Figure 3. Energy levels and spatial distributions of the frontier molecular orbitals in the TS structures associated with the homolytic (left) and
heterolytic (right) pathways for (A) CuZnNi and (B) CuZnFe. Refer to Figure S7 for larger images depicting the spatial distributions of the
frontier molecular orbitals.
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(Since most nanoclusters contain multiple types of metal
atoms, each value of ΔGhomo‡ shows up in multiple violins.) The
results show that MeO-NCs with Mn and Cu on M1, Ni, and
Zn on M2, and Co and Ni on M3 presented a slightly higher
likelihood of possessing a ΔGhomo‡ lower than the value for the
base material CuCuCu of 139 kJ/mol (red dashed line).
However, we note that the ΔGhomo‡ value is collectively
determined by the three metal sites rather than by a single
metal site. This is evident from the wide range of ΔGhomo‡

values, which span from ∼100 to ∼300 kJ/mol for each metal
on the M1, M2, or M3 sites. In sharp contrast, the violin plots in
Figure 2D−F show more localized ΔGheter‡ values. For example,
nearly all of the MeO-NCs favoring the heterolytic pathway at
M1 exhibit ΔGheter−Md1

‡ values close to 200 kJ/mol when M1 is
Co (Figure 2D). Such narrow distributions emphasize the
pivotal role of the metal site interacting with CH3 in
determining the ΔGheter‡ values, aligning well with our chemical
intuition.
To elucidate the preference for the homolytic versus

heterolytic pathways, we delved further into two exemplary
systems. The first, CuZnNi, stands out as the most active
among the 162 MeO-NCs. It favors the homolytic mechanism
with a ΔGhomo‡ value of 113 kJ/mol, which is lower than its
ΔGheter−Md1

‡ value of 140 kJ/mol. The second, CuZnFe, is also
notably active but favors the heterolytic pathway, with values of
ΔGhomo‡ = 174 kJ/mol and ΔGheter−Md1

‡ = 126 kJ/mol. To shed
light on the pathway preferences, we investigated the frontier
molecular orbitals for their TS structures, which are crucial for
understanding bonding strength and reactivity. For CuZnNi,
as illustrated in Figure 3A, we observed pronounced σ bonding
orbitals in the spin-up (α) HOMO and HOMO−1, with
complementary spin-down (β) HOMO−1 in the homolytic
TS structure. However, the heterolytic TS counterpart paints a
different picture: although the spin-up HOMO facilitates
proton transfer, the Cu−CH3 bonding is weakened by its σ*
antibonding nature. Such σ* antibonding between Cu and
CH3 was also found in the spin-down HOMO−1, in tandem
with the nonbonding orbitals, such as the spin-up HOMO−1
and spin-down HOMO. This electronic structure renders the
heterolytic pathway less energetically favorable. For compar-
ison, Figure 3B illustrates the electronic structures of the
homolytic and heterolytic TS structures of CuZnFe. For the
homolytic TS, the spin-up HOMO−1 and the spin-down
HOMO and HOMO−1 are characterized as nonbonding
orbitals. Conversely, in the heterolytic TS, the spin-up
HOMO−1 and the spin-down HOMO and HOMO−1 exhibit
a strengthened bonding interaction between Cu and CH3, thus,
making the heterolytic pathway more energetically favorable.
These two exemplary systems show how the tuning of
electronic structures significantly influences the preference
for either homolytic or heterolytic pathways in methane
activation.

3.2. Supervised Machine Learning for Probing
Structure−Property Relationships. Next, we employed
machine learning techniques to establish a connection between
the inherent characteristics of the active oxygen site and the
four transition metal sites and their critical role in catalytic
hydrogen abstraction. Our approach leveraged various input
features derived from the DFT-optimized initial structure of
the MeO-NCs. These features encompassed the partial charge
(q) and spin density (ρ) associated with the tricoordinated
oxygen and the four transition metals, in addition to the p-

band center of the tricoordinated oxygen (εp), the d-band
center of the transition metal atoms (εd), the HOMO−LUMO
gap of the entire nanocluster (Eg), the number of d-electrons
(Nd) for the metal elements on the M1, M2, and M3 sites, as
well as crucial bond lengths (dMd1−O, dMd2−O, dMd3−O), bond
angles (∠Md1OMd2

, ∠Md1OMd3
, ∠Md2OMd3

), and the dihedral angle
θMd1Md2Md3O (see Table S5 for detailed data on these parameters).
The objective of this study was to correlate these electronic
and structural parameters with the free energy barriers
associated with both homolytic and heterolytic mechanisms,
thus shedding light on the catalytic process at the active oxygen
sites.
For this task, we divided the 162 MeO-NCs into 80%

training and 20% test sets and employed a widely used
supervised ML method, the extra-trees regression (ETR),55

which is a tree-based method recognized for its effectiveness in
predicting material properties. However, the results showed
persistent overfitting that could not be resolved by modulating
the complexity of the models (refer to Section 2 and Figures
S8−S10 in the Supporting Information for more details).
This overfitting likely arises from the limited training data
available, a constraint imposed by the computationally
intensive nature of the DFT.
To overcome this limitation, we adopted the SISSO

method,41 a state-of-the-art technique noted for its effective-
ness in handling small data sets42,43 and commonly used in the
context of material science.56,57 A key advantage of SISSO is its
ability to derive explicit mathematical expressions connecting
input features to target properties. In our implementation of
SISSO, we evaluated descriptors in 1D, 2D, and 3D forms (i.e.,
descriptors employing a single term, two terms, and three
terms), each representing an increasing level of complexity in
the mathematical fitting. The effectiveness of this approach is
demonstrated in Figure S11, which shows that overfitting was
significantly reduced. This suggests improved generalization
and robustness of the SISSO-based predictions compared with
those obtained from ETR. Despite these improvements, the
predictive performance on the test set remains suboptimal,
with r values still below 0.8.
A potential factor impacting the accuracy of our predictions

is the inherent structural variability in amorphous nanoclusters.
This is particularly evident in the atoms peripheral to the active
oxygen site, including the dangling OH groups, H2O groups,
and minor, yet nonnegligible, structural disturbances upon
methane approaching. Such structural flexibility can lead to
substantial energy fluctuations in the MeO-NCs, making it
challenging to predict the free energy barriers accurately using
ML.
To mitigate the impact of the structural flexibility of

peripheral atoms and primarily focus on the structure−
property relationships at the active oxygen center, a tractable
strategy is to concentrate on structures exhibiting minimal
structural changes from their initial states to their TS. For the
next stage of our research, we decided to discard any TS
structure where the distance between any O−H pair changed
by more than 0.5 Å from the initial configuration. The SISSO
prediction results for these discarded structures are expectedly
poor (refer to Figure S12 for more details). As a result, we
retained a refined set of 47, 66, 29, and 35 TS structures (see
Table S6 for the data), totaling 177, for the homolytic pathway
and the three heterolytic pathways, respectively, and retrained
the model with this subset.
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The SISSO prediction results, illustrated in Table 1 and
Figure 4, demonstrated a promising performance. Initially, the
use of 1D descriptors was too simplistic to capture the
complicated interactions among the various chemical factors,
leading to underfitting in our models (left panels).
Transitioning to 2D descriptors resulted in a significant
improvement in prediction performances (middle panels).
The r values for all training data sets were close to or exceeded
0.9, with the highest RMSE reaching just 10.6 kJ/mol. For the
test data sets, r values remained above 0.85, with RMSEs for
heterolytic pathways (ΔGheter−Md1

‡ , ΔGheter−Md2

‡ , ΔGheter−Md3

‡ )
staying below 13 kJ/mol, while ΔGhomo‡ reached 19.8 kJ/mol.
Advancing to models with 3D descriptors (right panels), we
observed further improvements: r values for both training and
test data sets were close to or above 0.9, and all RMSE values
were below 10 kJ/mol, except for ΔGhomo‡ , which stood at 14.7
kJ/mol. Notably, the increased complexity with 2D and 3D
descriptors effectively minimized overfitting, evidenced by the
small difference in r values (less than 0.08) between training
and test data sets across all predictions. Although SISSO yields
satisfactory predictions for the 177 TSs with minimal structural
variations, making predictions for nanoclusters with significant
structural changes (O−H pair distance changes exceeding 0.5
Å during methane activation) remains challenging (although
the results in Figure S11 might be considered sufficiently
accurate for initial screening). This is due to the substantial
randomness introduced during the structural relaxation of

these systems, resulting in r values generally lower than 0.5
(Figure S13).
Furthermore, the features selected by SISSO in these

mathematical expressions (Table 1) align well with our
physical intuition, reinforcing the model’s validity and
usefulness. For example, in the heterolytic pathways of
methane activation on metal M1, the descriptors predom-
inantly included properties related to M1 and the active
oxygen�such as the spin density and number of d-electrons
on M1, the p-band center of oxygen, and the M1−O−M2 bond
angle. A noteworthy parameter is the p-band center of the
asymmetrical structure of O (εpdO

) in the 2D and 3D equations
for ΔGheter−Md1

‡ , exhibiting a negative correlation between εpdO

and ΔGheter−Md1

‡ . This can be rationalized by the existing p-band
theory:58,59 a more positive εpdO

can lead to lower occupancy of
the antibonding orbitals when binding with adsorbates, thereby
potentially lowering the energy barrier due to the Brønsted−
Evans−Polanyi (BEP) relation.60 Similarly, we observed a
negative correlation between the d-band center of M2 ( dM2

)

and ΔGheter−Md2

‡ , consistent with the trend suggested by the d-
band center theory.61,62 Additional insights were gained from
observing the influence of the spin density of the fourth Cu
atom located further from the active site, as reflected in the 3D
expression for ΔGhomo‡ . This suggests that reducing the spin
density disparity between the Cu and M1 sites could potentially
lower ΔGhomo‡ . This provides a strategic direction for enhancing

Table 1. SISSO-Suggested Best-Performing Mathematical Expressions Connecting the Electronic and Structural Features and
the Target Free Energy Barriers for the 177 TS Structures with Minimal Structural Changes during Methane Activation

target dimension of descriptor mathematical expression
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the catalytic efficiency of the MeO-NCs. Notably, the top
seven species, ranked by ΔGhomo‡ , all have Cu as their M1 site
metal, including the best-performing species CuZnNi. Addi-
tionally, some species with Zn as the M1 site (Zn has a spin
density similar to that of Cu), such as ZnCuCu, also rank
highly when ranked by ΔGhomo‡ .
We also implemented another strategy to exclude the impact

of structural variability in MeO-NCs on the structure−
property relationships. Specifically, we took inspiration from
the activation-strain model,63−67 decomposing the overall free
energy barriers associated with methane activation for all 162
MeO-NCs into two components, as depicted in Figure 5: (1)
the free energy required to strain the MeO-NCs (ΔGstrain)
during methane approach, taking structures post-strain by
removing methane from the TS, referred to as IS_strain, and
(2) the energy needed to activate the C−H bond in methane
(ΔGact‡ ) on the strained structure (see Tables S7 and S8 for the
data), which partially reflects the ability of active oxygen to
activate methane and may serve as guidance for material
design. We then utilized SISSO to correlate the electronic and

Figure 4. Comparison of DFT-computed and SISSO-predicted (A) ΔGhomo‡ , (B) ΔGheter−Md1

‡ , (C) ΔGheter−Md2

‡ , and (D) ΔGheter−Md3

‡ for the 177 TS
structures with minimal structural changes during methane activation. The data sets were divided into an 80% training set (blue) and a 20% test set
(red). The left, middle, and right panels of parts A, B, C, and D are derived from the SISSO 1D, 2D, and 3D descriptors, respectively.

Figure 5. Illustration of contributions from the structural variation of
MeO-NCs (ΔGstrain) and methane activation (ΔGact‡ ) to the total
barrier in the methane activation process (ΔG‡).
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structural parameters of IS_strain with ΔGact‡ , aiming to gain
insights into the ease of methane activation relative to the
intrinsic properties of the active oxygen site.
The SISSO prediction results, as displayed in Figure 6,

demonstrate excellent performance for both the training and
test data sets, with acceptable predictive accuracy even for the
model with 1D descriptors in predicting ΔGhomo,act

‡ ,
ΔGheter−Md1,act

‡ , ΔGheter−Md2,act
‡ , and ΔGheter−Md3,act

‡ , with r values
exceeding 0.8 for the training sets and r values of 0.77, 0.82,
and 0.79, respectively, for the test sets (left panels). Moreover,
models utilizing 2D (middle panel) and 3D descriptors (right
panel) exhibit superior predictive performances, with all r
values surpassing 0.85 and the RMSEs remaining below 13 kJ/
mol for both training and test data sets. These favorable results
highlight a strong correlation between the methane activation
component (ΔGact‡ ) and the nanoclusters’ electronic and
structural features, as detailed in the mathematical expressions
listed in Table 2. A particularly noteworthy finding is the
negative correlation between N N( )d M d M1 2

+ and Ghomo,act
‡

w i t h i n t h e 1D e x p r e s s i o n o f ΔG h o m o , a c t
‡ (

G N N1.798d ( ) 304.081homo,act M O
2

d M d M3 1 2
= · + +‡ ). Since

the bond length dMd3−O remains relatively constant across all
162 structures (approximately 2.0 to 2.3 Å), ΔGhomo,act‡ can be
reduced by increasing N N( )d M d M1 2

+ , i.e., selecting metals with

a higher number of d-electrons at the M1 and M2 sites.
Similarly, the 1D expression for ΔGheter−Md1,act

‡ , given by
ΔGheter−Md1,act

‡ = 0.00235dMd1−O
6 ·qO·∠Md1OMd3

+ 173.568, indicates
that decreasing the charge density on oxygen could potentially
lower ΔGheter−Md1,act

‡ . Compared to more opaque “black-box-
like” ML models, these expressions provide a more
interpretable perspective that aids in the metal selection and
optimization of the MeO-NCs.

3.3. Unsupervised Machine Learning for the Quick
Distinction of Promising MeO-NCs. Above, we have
predicted the energy barriers for methane activation directly
from easily computable intrinsic material properties for a
subset of nanoclusters with minimal structural change during
the transition from the initial state to TS. However, it is still

Figure 6. Comparison of DFT-computed and SISSO-predicted (A) ΔGhomo,act‡ , (B) ΔGheter−Md1,act
‡ , (C) ΔGheter−Md2,act

‡ , and (D) ΔGheter−Md3,act
‡ for the

162 MeO-NCs. The data sets were divided into an 80% training set (blue) and a 20% test set (red). The left, middle, and right panels of figures
(A−D) are derived from the SISSO 1D, 2D, and 3D descriptors, respectively.
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highly desirable to quickly and effectively distinguish between
high- and low-performance nanoclusters while more robustly
accounting for structural flexibility. This is especially important
when considering the catalytic activity of amorphous nano-
clusters under experimental conditions. To this end, we
utilized an unsupervised machine learning model to cluster all
162 MeO-NCs, including all transition states, even those that
showed significant structural changes. We hypothesized that
MeO-NCs with high versus low performance levels might
exhibit unique electronic and geometric properties, which can
be identified via clustering algorithms. For this task, we
employed the BIRCH algorithm,45 known for its resilience
against noisy and unevenly distributed data. Figure 7 visually
represents the results on a 2D map, with axes derived from the
input features using PCA.44 Notably, the BIRCH algorithm
effectively segregated the MeO-NCs into two distinct regions:
the high-performing species (surpassing the CuCuCu base
material with a ΔGmin‡ of 139 kJ/mol) predominantly in the
cyan region, and the low-performing ones (ΔGmin‡ > 180 kJ/
mol) in the royal blue region. These results indicate that the
unsupervised model can distinguish the vast majority of high-
and low-performance MeO-NCs, even when including
structures that exhibit substantial structural flexibility.

To test the predictive ability of the resultant 2D map, we
introduced 32 new structures by substituting the distant
(fourth) Cu site with other transition metals, referred to as
M1M2M3-M4. The new data points are plotted in Figure 7 and
marked as stars. Encouragingly, the high- and low-performing
species, indicated by green and red boxed texts, align well with
the cyan and royal blue regions, respectively. This alignment
validates the predictive power of our 2D map for efficiently
screening out less promising nanoclusters. For comparison, we
also employed the Brønsted−Evans−Polanyi (BEP) relation,60
using the hydrogen affinity energy (ΔGH) to predict ΔGmin‡

(refer to Figure S14 for more details). However, no clear
pattern emerged. This highlights the advantage of unsupervised
learning in handling complex, amorphous systems by providing
a valuable initial screening tool, significantly reducing the
reliance on computationally expensive TS calculations and
accelerating the design and discovery of highly active MeO-
NCs.

3.4. Limitations and Considerations for Future
Research. In this work, we attempted to conduct a systematic
investigation of certain aspects of methane activation on MeO-
NCs, with a focus on exploring a range of different transition
metal compositions. It is important to acknowledge that our
calculations rely on certain necessary approximations and

Table 2. SISSO-Suggested Best-Performing Mathematical Expressions Connecting the Electronic and Structural Features of
IS_Strain and the Target ΔGact

‡ for 162 MeO-NCs

target dimension of descriptor mathematical expression
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assumptions to make this study tractable. First, all of the MeO-
NC models examined in this study were built based on the
substitution of the CuCuCu cluster from our previous work as
a representative, interesting structure. This model simplifica-
tion, which was made due to computational limits, does not
fully account for variations in the coordination environment
for each nanocluster, such as the number of surrounding H2O
and OH groups, which may vary depending on the ALD
synthesis conditions and the experimental reaction conditions.
However, it does reveal insights into how the composition
affects methane activation. Future research could benefit from
a more comprehensive examination using techniques like ab
initio thermodynamics and AIMD free energy calculations,
which allow for the inclusion of varying numbers of water and
OH groups,68 or more sophisticated global optimization
methods, such as Basin Hopping (BH)69 and grand canonical
genetic algorithm (GCGA).70

Additionally, although our analyses presumed a ferromag-
netic state, which is the most stable spin state for CuCuCu, we
recognize that other spin states may exist in different
nanoclusters. The presence of multiple ferro/antiferromagnetic
interactions could influence their electronic energy and
structural configurations. For example, elements like Fe or
Mn might exhibit preferences for different geometries, such as
near-trigonal pyramidal versus near-tetrahedral or near-square
planar configurations upon decoordination of a neutral
H2O.

71,72 This diversity opens pathways for future studies to
explore various spin states and their effects on structural
configurations and reactivities. Investigating these aspects may
require more complex assessments beyond standard DFT
calculations, such as high-level multireference methods.73

Moreover, this work focused only on the methane activation
step of the catalytic cycle. While this is a critical and
challenging step in methane utilization, the development of
improved catalyst materials requires investigation of the full

catalytic cycle, including the formation of the metal-oxo site, in
our case, the μ3-O site, particularly from a kinetic perspective.
Although our calculations on the base material CuCuCu and
two high-performing nanoclusters, CuZnFe and CuZnNi,
showed highly exothermic μ3-O formation with no apparent
energy barrier (Figure S15), it is possible that other
nanoclusters may exhibit significant kinetic barriers for μ3-O
formation. Furthermore, factors such as product (or inter-
mediate) desorption, side reactions, and cluster reoxidation
could play essential roles in determining the overall catalytic
performance. The various limitations discussed here highlight
the challenges in modeling amorphous catalytic materials as
well as nanoclusters containing multiple transition metal atoms
and may point the way toward potential enhancements in
future studies.

4. CONCLUSIONS
An integration of DFT calculations with advanced machine
learning techniques has led to significant insights into a family
of MeO-NCs as catalysts for efficient methane activation.
Inspired by a previously identified tetra-copper oxide nano-
cluster,28 our systematic substitution strategy uncovered 12
novel compositions that are predicted to have enhanced
catalytic activity. We also analyzed the electronic structures of
these systems to enhance our understanding of the
competition between homolytic and heterolytic methane
activation mechanisms. Further, we leveraged sophisticated
machine learning algorithms to refine our understanding of
complex structure−reactivity relationships, resulting in math-
ematical models that bridge electronic and structural features
with the catalytic activity at the active oxygen center. Finally,
we developed an unsupervised clustering model capable of
distinguishing high-performing nanoclusters from their less
effective counterparts while accommodating the inherent
flexibility of peripheral atoms in amorphous structures.

Figure 7. Application of unsupervised machine learning to cluster the MeO-NCs. The horizontal and vertical axes are the dimensionality reduced
features using PCA, based on the electronic and geometric features. The color bar represents the ΔGmin values for each MeO-NC. MeO-NCs
performing well (ΔGmin < 139 kJ/mol) and poorly (ΔGmin > 180 kJ/mol) are labeled in green and red texts, respectively. The original 162 data
points are represented by circles, and the newly added 32 validation data points (with high- and low-performing species marked in boxed green and
red text) are depicted by stars.
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Looking forward, this work focusing on C−H bond
activation and the complexities of amorphous nanoclusters
opens up new avenues for understanding and manipulating
these challenging systems. The detailed examination of the
relationship between the intrinsic properties of tricoordinated
oxygen sites and adjacent metal sites, and their catalytic activity
toward methane activation, lays a promising foundation for
exploring larger nanoclusters with comparable active oxygen
sites. For future exploration of new tetrametal nanoclusters for
methane activation, the SISSO-derived equations and un-
supervised clustering methods are readily applicable for
material screening. Given a number of new nanoclusters, we
recommend first optimizing their geometry, followed by single-
point calculations using DFT to obtain the intrinsic features as
detailed in Section 3.2. Subsequently, since the BIRCH model
is more robust and demonstrated to work well even for
nanoclusters showing changes in geometry between the
reactant and transition state, we recommend feeding these
features into the BIRCH model (refer to our GitHub
repository74 for the code and instructions) for preliminary
screening. For species falling into high-performance regions,
we can then input the features into our SISSO-derived
equations to quickly estimate the methane activation energy
barrier, screening the most promising candidate materials for
more accurate DFT studies. This approach can bypass the
expensive TS calculations for the most poorly performing
nanoclusters.
The integration of computational chemistry and machine

learning methods, as showcased in our research, is poised to
play a crucial role in accelerating the pace of material discovery
and can be readily adapted to other catalytic systems,
potentially revolutionizing the way we approach catalyst design
and optimization in various chemical transformations.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acscatal.4c04021.

Introduction of base copper oxide nanocluster; spin
density distribution for CuCuCu; electronic and free
energy barrier plots; frontier molecular orbitals for
CuZnNi and CuZnFe; ETR results for 162 MeO-NCs;
SISSO results for 162 MeO-NCs and for the nano-
clusters with significant variations during TS formation;
relative free energies for each MeO-NC at relevant spin
states; energy barrier values for each MeO-NC; and
strain and activation components of free energy barriers
for each MeO-NC (PDF)
DFT-optimized key structure coordinates in xyz format
(Str.zip) (ZIP)

■ AUTHOR INFORMATION
Corresponding Author

Randall Q. Snurr − Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois
60208, United States; orcid.org/0000-0003-2925-9246;
Email: snurr@northwestern.edu

Authors
Xijun Wang − Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois
60208, United States; orcid.org/0000-0001-9155-7653

Kaihang Shi − Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois
60208, United States; Department of Chemical and
Biological Engineering, University at Buffalo, The State
University of New York, Buffalo, New York 14260, United
States; orcid.org/0000-0002-0297-1746

Anyang Peng − Department of Chemical and Biological
Engineering, Northwestern University, Evanston, Illinois
60208, United States; orcid.org/0000-0002-0630-2187

Complete contact information is available at:
https://pubs.acs.org/10.1021/acscatal.4c04021

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Institute for Catalysis in
Energy Processes (ICEP) via the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences under Award
Number DOE DE-FG02-03ER15457. This research used
resources of the National Energy Research Scientific
Computing Center (NERSC), a DOE Office of Science User
Facility supported by the Office of Science of the U.S.
Department of Energy under contract No. DE-AC02-
05CH11231 using NERSC award BES-ERCAP0023154. This
research was also supported in part through the computational
resources and staff contributions provided for the Quest high
performance computing facility at Northwestern University
which is jointly supported by the Office of the Provost, the
Office for Research, and Northwestern University Information
Technology. This work was also supported by the San Diego
Supercomputer Center at University of California San Diego
through allocation no. CHM230037 from the Advanced
Cyberinfrastructure Coordination Ecosystem: Services &
Support (ACCESS) program,75 which is supported by
National Science Foundation grants #2138259, #2138286,
#2138307, #2137603 and #2138296.

■ REFERENCES
(1) C. World Energy Council. World Energy Resources 2013 Survey:
Summary; World Energy Council: London, UK, 2013; p 29.
(2) Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; Van Bokhoven, J.
A. Selective anaerobic oxidation of methane enables direct synthesis
of methanol. Science 2017, 356 (6337), 523−527.
(3) Ogura, K.; Takamagari, K. Direct conversion of methane to
methanol, chloromethane and dichloromethane at room temperature.
Nature 1986, 319 (6051), No. 308.
(4) Wang, S.; Fung, V.; Hülsey, M. J.; Liang, X.; Yu, Z.; Chang, J.;
Folli, A.; Lewis, R. J.; Hutchings, G. J.; He, Q.; Yan, N. H2-reduced
phosphomolybdate promotes room-temperature aerobic oxidation of
methane to methanol. Nat. Catal. 2023, 6 (10), 895−905.
(5) Wen, W.; Che, J.-W.; Wu, J.-M.; Kobayashi, H.; Pan, Y.; Wen,
W.; Dai, Y.-H.; Huang, W.; Fu, C.; Zhou, Q.; Lu, G.-L.; Tian, H.; Liu,
J.; Yang, P.; Chen, X.; Sun, T.-L.; Fan, J. Co3+−O bond elongation
unlocks Co3O4 for methane activation under ambient conditions.
ACS Catal. 2022, 12 (12), 7037−7045.
(6) Zheng, J.; Ye, J.; Ortuño, M. A.; Fulton, J. L.; Gutiérrez, O. Y.;
Camaioni, D. M.; Motkuri, R. K.; Li, Z.; Webber, T. E.; Mehdi, B. L.;
Browning, N. D.; Penn, R. L.; Farha, O. K.; Hupp, J. T.; Truhlar, D.
G.; Cramer, C. J.; Lercher, J. A. Selective methane oxidation to
methanol on Cu-oxo dimers stabilized by zirconia nodes of an NU-
1000 metal−organic framework. J. Am. Chem. Soc. 2019, 141 (23),
9292−9304.
(7) Ikuno, T.; Zheng, J.; Vjunov, A.; Sanchez-Sanchez, M.; Ortuño,
M. A.; Pahls, D. R.; Fulton, J. L.; Camaioni, D. M.; Li, Z.; Ray, D.;

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.4c04021
ACS Catal. 2024, 14, 18708−18721

18719

https://pubs.acs.org/doi/10.1021/acscatal.4c04021?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acscatal.4c04021/suppl_file/cs4c04021_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.4c04021/suppl_file/cs4c04021_si_002.zip
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Randall+Q.+Snurr"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2925-9246
mailto:snurr@northwestern.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xijun+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9155-7653
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kaihang+Shi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0297-1746
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anyang+Peng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0630-2187
https://pubs.acs.org/doi/10.1021/acscatal.4c04021?ref=pdf
https://doi.org/10.1126/science.aam9035
https://doi.org/10.1126/science.aam9035
https://doi.org/10.1038/319308a0
https://doi.org/10.1038/319308a0
https://doi.org/10.1038/s41929-023-01011-5
https://doi.org/10.1038/s41929-023-01011-5
https://doi.org/10.1038/s41929-023-01011-5
https://doi.org/10.1021/acscatal.1c05744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c05744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.9b02902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.9b02902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.9b02902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.4c04021?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Mehdi, B. L.; Browning, N. D.; Farha, O. K.; Hupp, K. T.; Cramer, C.
J.; Gagliardi, L.; Lercher, J. A. Methane oxidation to methanol
catalyzed by Cu-oxo clusters stabilized in NU-1000 metal−organic
framework. J. Am. Chem. Soc. 2017, 139 (30), 10294−10301.
(8) Lee, I.; Lee, M.-S.; Tao, L.; Ikuno, T.; Khare, R.; Jentys, A.;
Huthwelker, T.; Borca, C. N.; Kalinko, A.; Gutiérrez, O. Y.; Govind,
N.; Fulton, J. L.; Hu, J. Z.; Glezakou, V.-A.; Rousseau, R.; Sanchez-
Sanchez, M.; Lercher, J. A. Activity of Cu−Al−Oxo extra-framework
clusters for selective methane oxidation on Cu-exchanged zeolites.
JACS Au 2021, 1 (9), 1412−1421.
(9) Zheng, J.; Lee, I.; Khramenkova, E.; Wang, M.; Peng, B.;
Gutiérrez, O. Y.; Fulton, J. L.; Camaioni, D. M.; Khare, R.; Jentys, A.;
Haller, G. L.; Pidko, E. A.; Sanchez-Sanchez, M.; Lercher, J. A.
Importance of methane chemical potential for its conversion to
methanol on Cu-exchanged mordenite. Chem. - Eur. J. 2020, 26 (34),
7563−7567.
(10) Ikuno, T.; Grundner, S.; Jentys, A.; Li, G.; Pidko, E.; Fulton, J.;
Sanchez-Sanchez, M.; Lercher, J. A. Formation of active Cu-oxo
clusters for methane oxidation in Cu-exchanged mordenite. J. Phys.
Chem. C 2019, 123 (14), 8759−8769.
(11) Dinh, K. T.; Sullivan, M. M.; Narsimhan, K.; Serna, P.; Meyer,
R. J.; Dinca, M.; Román-Leshkov, Y. Continuous partial oxidation of
methane to methanol catalyzed by diffusion-paired copper dimers in
copper-exchanged zeolites. J. Am. Chem. Soc. 2019, 141 (29), 11641−
11650.
(12) Mahyuddin, M. H.; Tanaka, T.; Shiota, Y.; Staykov, A.;
Yoshizawa, K. Methane partial oxidation over [Cu2 (μ-O)] 2+ and
[Cu3 (μ-O) 3] 2+ active species in large-pore zeolites. ACS Catal.
2018, 8 (2), 1500−1509.
(13) Zhao, Z. J.; Kulkarni, A.; Vilella, L.; Nørskov, J. K.; Studt, F.
Theoretical insights into the selective oxidation of methane to
methanol in copper-exchanged mordenite. ACS Catal. 2016, 6 (6),
3760−3766.
(14) Yu, X.; Zhong, L.; Li, S. Catalytic cycle of the partial oxidation
of methane to methanol over Cu-ZSM-5 revealed using DFT
calculations. Phys. Chem. Chem. Phys. 2021, 23 (8), 4963−4974.
(15) Tao, L.; Khramenkova, E.; Lee, I.; Ikuno, T.; Khare, R.; Jentys,
A.; Fulton, J. L.; Kolganov, A. A.; Pidko, E. A.; Sanchez-Sanchez, M.;
Lercher, J. A. Speciation and reactivity control of Cu-Oxo clusters via
extraframework Al in mordenite for methane oxidation. J. Am. Chem.
Soc. 2023, 145 (32), 17710−17719.
(16) Zhao, Z.-J.; Kulkarni, A.; Vilella, L.; Nørskov, J. K.; Studt, F.
Theoretical insights into the selective oxidation of methane to
methanol in copper-exchanged mordenite. ACS Catal. 2016, 6 (6),
3760−3766.
(17) Mahyuddin, M. H.; Staykov, A.; Shiota, Y.; Miyanishi, M.;
Yoshizawa, K. Roles of zeolite confinement and Cu−O−Cu angle on
the direct conversion of methane to methanol by [Cu2 (μ-O)] 2+-
exchanged AEI, CHA, AFX, and MFI zeolites. ACS Catal. 2017, 7 (6),
3741−3751.
(18) Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.;
Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of
metal and metal oxide nanoparticles@ MOFs. Coord. Chem. Rev.
2016, 307, 237−254.
(19) Farooq, U.; Ahmad, T.; Naaz, F.; ul Islam, S. Review on metals
and metal oxides in sustainable energy production: progress and
perspectives. Energy Fuels 2023, 37 (3), 1577−1632.
(20) Matus, M. F.; Häkkinen, H. Understanding ligand-protected
noble metal nanoclusters at work. Nat. Rev. Mater. 2023, 8, 372−389.
(21) Formalik, F.; Shi, K.; Joodaki, F.; Wang, X.; Snurr, R. Q.
Exploring the structural, dynamic, and functional properties of metal−
organic frameworks through molecular modeling. Adv. Funct. Mater.
2023, No. 2308130.
(22) Wang, X.; Jiang, S.; Hu, W.; Ye, S.; Wang, T.; Wu, F.; Yang, L.;
Li, X.; Zhang, G.; Chen, X.; Jiang, J.; Luo, Y. Quantitatively
determining surface−adsorbate properties from vibrational spectros-
copy with interpretable machine learning. J. Am. Chem. Soc. 2022, 144
(35), 16069−16076.

(23) Mou, T.; Pillai, H. S.; Wang, S.; Wan, M.; Han, X.; Schweitzer,
N. M.; Che, F.; Xin, H. Bridging the complexity gap in computational
heterogeneous catalysis with machine learning. Nat. Catal. 2023, 6
(2), 122−136.
(24) Zhang, S.; Lu, S.; Zhang, P.; Tian, J.; Shi, L.; Ling, C.; Zhou,
Q.; Wang, J. Accelerated discovery of single-atom catalysts for
nitrogen fixation via machine learning. Energy Environ. Mater. 2023, 6
(1), No. e12304.
(25) Li, H.; Jiao, Y.; Davey, K.; Qiao, S.-Z. Data-driven machine
learning for understanding surface structures of heterogeneous
catalysts. Angew. Chem., Int. Ed. 2023, 135 (9), No. e202216383.
(26) Doan, H. A.; Li, Z.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q.
Theoretical insights into direct methane to methanol conversion over
supported dicopper oxo nanoclusters. Catal. Today 2018, 312, 2−9.
(27) Doan, H. A.; Wang, X.; Snurr, R. Q. Computational screening
of supported metal oxide nanoclusters for methane activation: Insights
into homolytic versus heterolytic C−H bond dissociation. J. Phys.
Chem. Lett. 2023, 14, 5018−5024.
(28) Wang, X.; Shi, K.; Peng, A.; Snurr, R. Q. Probing the structure−
property relationships of supported copper oxide nanoclusters for
methane activation. EES Catal. 2024, 2, 351−364.
(29) Avila, J. R.; Emery, J. D.; Pellin, M. J.; Martinson, A. B. F.;
Farha, O. K.; Hupp, J. T. Porphyrins as templates for site-selective
atomic layer deposition: vapor metalation and in situ monitoring of
island growth. ACS Appl. Mater. Interfaces. 2016, 8 (31), 19853−
19859.
(30) Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.;
Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts,
R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.;
Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi,
F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.;
Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov,
V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.
Gaussian 16; Gaussian, Inc.: Wallingford CT, 2016.
(31) Zhao, Y.; Truhlar, D. G. A new local density functional for
main-group thermochemistry, transition metal bonding, thermochem-
ical kinetics, and noncovalent interactions. J. Chem. Phys. 2006, 125
(19), No. 194101.
(32) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence,
Triple zeta valence and quadruple zeta valence quality for h to rn:
design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7
(18), 3297−3305.
(33) Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, r.
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